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Abstract

One of the major aims of the nascent field of evolutionary systems biology is to test evolutionary hypothe-
ses that are not only realistic from a population genetic point of view but also detailed in terms of
molecular biology mechanisms. By providing a mapping between genotype and phenotype for hundreds
of genes, genome-scale systems biology models of metabolic networks have already provided valuable
insights into the evolution of metabolic gene contents and phenotypes of yeast and other microbial
species. Here we review the recent use of these computational models to predict the fitness effect of
mutations, genetic interactions, evolutionary outcomes, and to decipher the mechanisms of mutational
robustness. While these studies have demonstrated that even simplified models of biochemical reaction
networks can be highly informative for evolutionary analyses, they have also revealed the weakness of this
modeling framework to quantitatively predict mutational effects, a challenge that needs to be addressed
for future progress in evolutionary systems biology.
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1. Introduction

Addressing many important questions in evolutionary biology
relies on our understanding of the mapping between genotype
and phenotype. Although evolutionary genetics analyses often
use highly simplified and abstract genotype-fitness maps, recent
advances in systems biology provide an unprecedented opportu-
nity to calculate genotype—phenotype relationships using realistic
mathematical models of molecular systems (1). With an increas-
ing potential to computationally predict evolutionary relevant
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parameters, such as the distribution of mutational effects and
genetic interactions, molecular systems biology approaches begin
to offer mechanistic insights into various topics from mutational
robustness to genome evolution (2-6). Mathematical models
that are most suited to address evolutionary questions can either
directly calculate phenotypes that serve as fitness correlates (e.g.,
growth rate) or infer gene—gene relationships based on certain
calculated phenotypes (e.g., identifying gene sets with corre-
lated activities). These models include detailed kinetic models
of metabolic pathways (7), regulatory circuits (cell cycle, circa-
dian clock, etc.) (8), logical models of signaling networks (9),
and constraint-based models of genome-scale metabolic networks
(10). While most modeling approaches focus on small-scale bio-
chemical systems (i.e., individual pathways) and characterize the
mechanism of each enzymatic step, constraint-based models aim
to calculate the metabolic behavior of relatively large systems (i.e.,
600-1,300 genes) with relatively low data requirements. More-
over, these models are available for a number of microbial species,
thereby providing a rigorous way to test evolutionary hypotheses.

The constraint-based framework uses mass balance and capac-
ity constraints to define the space of all feasible steady-state flux
distributions of the metabolic network leading from input (i.e.,
nutrient uptake) to output (an objective function, for instance,
biomass production). Optimal network states are then identified
within this space by maximizing or minimizing a certain metabolic
objective function, an approach called flux balance analysis (FBA)
(10, 11). However, the large size and comprehensive nature of
these metabolic network models comes at a price as the frame-
work lacks mechanistic details (e.g., kinetic rate constants and
regulatory mechanisms), can only calculate steady-state patterns,
and assumes that cells are fine-tuned from an evolutionary point
of view. Furthermore, these models are restricted to simulate the
effects of “large” mutations only (i.e., complete gene deletions or
gene additions). Ultimately, the utility of genome-scale metabolic
models for evolutionary analyses depends on how accurately they
predict fitness correlates (e.g., growth phenotypes) and evolution-
ary relevant gene—gene relationships, a question that needs empir-
ical investigation.

This chapter starts by discussing the use of constraint-based
metabolic modeling in Saccharomyces cevevisine to predict the
effect of single and multiple mutations and hence to explore fit-
ness landscapes (Fig. 27.1a). Fitness landscapes (or adaptive land-
scapes) visualize the relationship between genotypes and fitness
and allow evolutionary biologists to investigate how mutations
interact (epistasis) and which particular trajectories are taken dur-
ing evolution. For example, the presence of multiple peaks on a
fitness landscape indicates that some of the mutational paths to
higher fitness alleles are selectively inaccessible (12) (Fig. 27.1a).
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Fig. 27.1. Fitness landscape and epitasis studies. (@) An imaginary fitness landscape
visualizing the relationship between genotype and fitness. The plane of the landscape
contains all possible genotypes in such a way that similar genotypes are located close
to each other on the plane and the height of the landscape reflects the fitness of the
corresponding genotype. (b) Positive and negative epistases on a two-locus, two-allele
genotype plane. Independence of gene action (no epistasis) is defined by a multiplicative
model (i.e., when the fitness of the double mutant equals to the product of the fitnesses
of the two single mutants).

Thus, to fully understand why particular evolutionary trajectories
are realized and to what extent systems-level properties constrain
the evolution of biochemical networks, we need detailed fitness
landscapes of molecular systems. Next, we ask whether micro-
bial metabolic network models have the potential to predict the
outcome of evolutionary change, at least on short timescales, a
question that has been addressed by laboratory evolution exper-
iments in bacteria. Although most prior studies on evolution-
ary outcomes focused on Escherichia coli and other bacteria, we
believe that similar approaches could also be adopted to analyze
metabolic network evolution in baker’s yeast. Finally, we analyze
the shortcomings of constraint-based metabolic models to cal-
culate weak fitness effects and genetic interactions, and discuss
the utility of incorporating additional biological knowledge to
increase their predictive performance. Although it is beyond the
scope of the present review, we note that besides evolutionary
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analyses, genome-scale metabolic network reconstructions have
also been employed to draw ecological inferences, for example, to
infer the habitable environments of different species (13) and to
investigate the ecological strategies of bacteria (14).

2. Interrogating
the Fitness
Landscape:
Predicting
Mutational Effects

2.1. Computing the
Growth Effect of
Single-Gene
Deletions

A straightforward systems biology strategy to begin to explore fit-
ness landscapes is to computationally predict the effects of single
mutations and their pair-wise epistatic interactions (i.e., the non-
independence between the phenotypic effects of two mutations)
(see Fig. 27.1b). Besides providing an intelligible abstraction of
the high-dimensional adaptive landscape, accurate prediction of
single- and double-mutant phenotypes can be used, among oth-
ers, to investigate the nature and evolution of genetic robustness
(3, 15) and can be harnessed to identify potential novel antimi-
crobial drug targets (16, 17).

The popular approach of flux balance analysis uses optimization
principles to find one particular solution (i.e., flux distribution)
among all possible metabolic network states that satisty the gov-
erning physicochemical constraints (10). The objective function
of the optimization protocol may be the rate of biomass forma-
tion (growth rate) or usually the biomass yield (i.e., the rate of
biomass production divided by the rate of nutrient uptake), given
limiting nutrients from the environment. Thus, the phenotype
of wild-type and mutant strains can be computationally charac-
terized by their (optimal) growth rates, a phenotype that can be
easily measured in laboratory experiments. This strategy formed
the basis of one of the first applications of the yeast genome-scale
metabolic model (18), which systematically compared in silico
growth of single-gene deletant strains with in vivo growth phe-
notypes on a qualitative scale (i.e., lethal or viable) (19). Tak-
ing essential genes (i.e., those whose disruption leads to lethal-
ity under standard laboratory conditions) as a reference, differ-
ent versions of the yeast model have been reported to predict
essential and non-essential genes with 83-90% accuracy (19-21).
However, this high percentage of consistent phenotypes obscures
the fact that essential genes are both less frequent in vivo and
more difficult to predict than non-essential ones (21-23). Plot-
ting the true-positive and false-positive rates of essentiality pre-
dictions (Fig. 27.2) reveals that one model (iLL672) is clearly
superior to another (iND750) in terms of its capacity to discrim-
inate between lethal and viable knockout phenotypes across 16
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Fig. 27.2. Comparison of gene essentiality prediction performances of two different
yeast metabolic network models (iND750 and iLL672) and two different optimization
algorithms (FBA and MOMA) using receiver-operating characteristic (ROC) curves. ROC
curves visualize classifier performance and can be employed to explore the trade-off
between true-positive and false-positive rates at all possible cutoff levels (i.e., at dif-
ferent predicted growth rate cutoffs below which a strain is considered lethal). The
closer the ROC plot is to the upper left corner, the higher the overall accuracy of the
prediction. The horizontal axis represents the false-positive rate (number of true non-
essential genes predicted as lethal/number of true non-essential genes), whereas the
vertical axis represents the true-positive rate (number of correctly predicted true essen-
tial genes/number of true essential genes). We compiled gene essentiality data from
(22), which measured growth phenotypes under 16 metabolically relevant conditions,
and from (40), which identified genes that are essential even under nutrient-rich con-
ditions. Computational predictions were taken from (22). Only genes present in both
models were used for the comparison. We note that approximately one-third of the
advantage of the iLL672 model against the iND750 model can be explained by dif-
ferences in the biomass composition of the models (the area under the ROC curve of
iLL672, iIND750, and iND750 supplemented with the biomass composition of iLL672 is
0.8176, 0.6822, and 0.7241, respectively).

metabolically relevant growth conditions (see Fig. 27.2 legend
for details).

One conceptual reason why flux balance analysis might mis-
predict in vivo gene essentiality is that it assumes optimal net-
work behavior even in gene knockout strains. To overcome
this difficulty, other optimization criteria have been proposed
that assume minimal flux reorganization in gene deletant strains
with respect to the wild-type flux distribution (minimization of
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2.2. Predicting
Genetic Interactions

metabolic adjustment, MOMA, and regulatory on/oft minimiza-
tion, ROOM, algorithms, (24, 25)). Although this approach
yields a more accurate prediction of mutant flux distributions
(26), it only slightly improves gene essentiality predictions (22)
(see continuous and dotted lines in Fig. 27.2). Apparently, suc-
cessful prediction of essential genes more critically depends on the
proper formulation of biomass compositions (i.e., model output)
(21) and on the completeness of our knowledge of the metabolic
processes associated with these genes (23).

While constraint-based metabolic models predict the pres-
ence or the absence of mutant growth with good accuracy, one
might wonder whether these models could also capture quanti-
tative growth differences of viable mutants. In theory, FBA or
MOMA analysis of mutant strains gives growth yields as outputs,
i.e., the rate of biomass production divided by the rate of limiting
nutrient uptake, therefore providing quantitative predictions.
The availability of large-scale competitive fitness (27) and growth
curve measurement data (28) for viable yeast knockouts oftfers an
opportunity to contrast predicted and experimentally determined
growth parameters for hundreds of metabolic gene deletants. In
agreement with a prior small-scale study (26), we generally find
weak correlations between in vivo competitive fitness or growth
rate and ¢z szlico biomass production (predicted biomass yield)
(Fig. 27.3a—c). Here, it should be noted that constraint-based
metabolic models compute biomass yields (29) and a comparison
of growth rate data to predicted biomass yields (Fig. 27.3c)
might not be fully descriptive. Therefore, we also plotted exper-
imentally measured growth efficiency (a proxy for growth yield)
against in silico-predicted biomass yield (Fig. 27.3d) which
resulted in an even weaker association. This suggests that the
constraint-based modeling approach fails to capture quantitative
growth differences in yeast mutants, at least in batch cultures
with glucose-minimal (SD) or -rich (YPD) media. It should be
noted, however, that S. cerevisine displays repressed respiration
when grown aerobically in excess glucose (30, 31). Indeed, this
regulatory effect varies across gene deletion backgrounds (32,
33) and it could strongly affect mutant growth in a way that
cannot be easily captured by a stoichiometric model. It remains
to be seen whether model predictions better match empirical data
when mutants are grown on non-fermentable carbon sources.

The fitness effect of mutation in one gene might be modu-
lated by mutations in other genes, a phenomenon called genetic
interaction or epistasis (Fig. 27.1b). Negative genetic interaction
occurs when two mutations decrease fitness more than would be
expected based on their individual effects (the most drastic form is
referred to as synthetic lethality), and for positive interactions, the
opposite is true. Epistatic relations reveal functional associations
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Fig. 27.3. Comparisons of in silico-predicted and experimentally determined growth parameters for viable metabolic
gene deletion strains (n = 499). Computational predictions were taken from (22) and are based on the iLL672 model
and MOMA algorithm (conclusions remain unchanged if prediction from the iND750 model or the FBA algorithm is used).
(@) Comparison to competitive fitness data measured on glucose-minimal (SD) medium (27), Spearman’s rho = 0.46,
p< 10727, (b) Comparison to competitive fitness data measured on glucose-rich (YPD) medium (27), Spearman’s rho =
0.26, p < 1078, (c) Comparison to growth rate data derived from growth curve measurements on SD (minimal medium)
(28), Spearman’s rho = 0.14, p = 0.002. (d) Comparison to growth efficiency data derived from growth curve measure-
ments on SD (minimal medium) (28), Spearman’s rho = 0.05, p = 0.27.

between genes (34) and influence many evolutionary processes
(35), therefore it is of great importance to understand the molec-
ular mechanisms underlying them and to develop reliable com-
putational tools to predict them. Genome-scale metabolic models
can rapidly calculate growth phenotypes for arbitrary sets of gene
deletions, therefore, in principle, could be applied to systemat-
ically compute epistatic interactions between double or higher
order gene knockouts. Indeed, yeast FBA models have been
applied to compute both positive and negative pair-wise genetic
interactions (36), and to identify synthetic lethality among mul-
tiple gene knockouts (37). However, relatively little is known
about the accuracy of FBA models to capture different forms



490 Papp, Szappanos, and Notebaart

2.3. Understanding
Gene Dispensability
and Mutational
Robustness

and magnitudes of in vivo genetic interactions, and one might
expect that if predictions of single-gene deletion phenotypes are
not perfect, then those of multiple gene deletions would be even
less accurate. A small-scale experimental validation of model-
predicted synthetic lethal pairs (synthetic lethals) in S. cerevisine
showed that almost 50% of them were correct (15), which is
much higher than would be expected by chance (<1%, based on
(38)). However, the FBA model missed more than 75% of pub-
lished synthetic lethals in the metabolic network, suggesting that
the constraint-based framework underestimates the prevalence of
negative genetic interactions. Furthermore, given the apparent
failure of FBA to capture quantitative growth differences of sin-
gle mutants, one might speculate that positive and weak genetic
interactions would be predicted with even lower success rates than
synthetic lethals. Future studies using quantitative epistatic data
from large-scale genetic interaction screens (39) would be needed
to rigorously assess the performance and limitations of constraint-
based metabolic models to predict epistasis.

Large-scale, single-gene deletion screens have revealed that
almost 80% of protein coding genes in S. cerevisiae seem not to be
essential for viability under standard laboratory conditions (40),
an observation that tallies with results from similar analyses per-
formed in other organisms (41). This finding raises the questions
of'what the mechanistic basis of gene dispensability is and whether
it is the result of an evolved capacity of genetic networks to com-
pensate for mutations. It has been suggested that the high fraction
of non-essential genes might reflect mutational robustness, i.e.,
the capacity to compensate for mutations by using either redun-
dant gene duplicates or alternative biochemical pathways (42).
A second possibility is that seemingly dispensable genes are sim-
ply not active in the tested environmental condition(s), although
they have important fitness contributions under special condi-
tions (3). Computational systems biology models that can reliably
predict the viability of single-gene deletants hold the promise to
provide mechanistic explanations for gene dispensability. Indeed,
a flux balance analysis model of yeast metabolism showed that
a large fraction of non-essential enzymatic genes catalyze reac-
tions that are inactive under the tested condition (i.e., carry zero
flux), hence there might be no need to invoke any compensatory
mechanism to explain their dispensability (3, 43). Furthermore,
according to the model, genes that are active but not essential
are mostly compensated by redundant gene duplicates and not by
alternative pathways. It should be noted, however, that FBA mod-
els assume optimal network behavior and are therefore likely to
overestimate the number of in vivo inactive reactions (i.e., subop-
timal pathways are completely silenced in model solutions) (44).
Nevertheless, some of the above computational predictions have
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been confirmed experimentally: 13C-flux analysis of viable yeast
knockouts showed that flux rerouting through alternative path-
ways explains only the minority of non-essential genes (43). Fur-
thermore, simulating gene deletions under a number of differ-
ent nutrient-limiting conditions predicted that many functionally
inactive genes would become essential under other conditions (3).
A large-scale chemical genomic assay in yeast provided strong sup-
port for this notion: 97% of gene deletions exhibited a measurable
growth phenotype in at least one of hundreds of tested conditions
compared to only 34% in rich medium (45).

Although the above computational and experimental studies
suggest that gene dispensability is only apparent and is mostly
explained by condition-specific gene functions, other empirical
works showed that most non-essential genes display synthetic
lethal interactions with some other genes (23). As synthetic lethal
genetic interactions indicate compensation between two genes
(i.e., mutational robustness), this raises the question as to how
these seemingly contradictory findings can be reconciled. A flux
balance analysis study of synthetic genetic interactions under a
large number of environmental conditions demonstrated that
the capacity to compensate null mutations varies substantially
between different nutritional environments (15). More specifi-
cally, it has been shown computationally, and confirmed by dou-
ble deletion experiments, that synthetic lethal interactions are
often restricted to particular environmental conditions, partly
because genes that are compensated in one condition make an
essential fitness contribution in another condition. Further empir-
ical studies on yeast gene duplicates corroborated the widespread
condition dependency of mutational compensation (46, 47).

The above findings also offer indirect insights into the selec-
tive forces shaping metabolic network evolution. Instead of
regarding apparent redundancies as adaptations against harmful
mutations (42), the presence of distinct but functionally overlap-
ping metabolic pathways more likely reflects the outcome of an
evolutionary adaptation characterized by selection for growth in
varying environments (i.e., various different nutrients). As a cor-
related response, some of these pathways may also increase muta-
tional resilience under some conditions (15, 48).

3. Predicting
Evolutionary
Outcomes: FBA as
an Evolutionary
Optimization
Model

How predictable is evolution? Evolutionary change is often con-
sidered to be contingent on initial conditions and chance events
and therefore unique on the one hand, and replicable owing to
predictable adaptive changes on the other hand (49). Systems
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biology modeling offers novel ways to investigate the predictabil-
ity of evolutionary outcomes and organismal diversity. In partic-
ular, metabolic network models have recently been employed to
test various hypotheses regarding the end state of evolutionary
process. First, flux balance analysis of metabolic networks gives
specific predictions on the steady-state behavior of evolutionary
adapted metabolic systems. Second, by accounting for systems-
level gene functions and relationships between genes, constraint-
based metabolic models also have the power to predict inter-
species differences in metabolic gene content, therefore to explain
comparative genomics patterns. The latter includes predicting
genes most likely undergoing loss and horizontal transfer events
(50), asymmetric gain or loss of enzyme pairs (4), and gene con-
tents of reduced genome endosymbiotic bacteria based on knowl-
edge of its distant ancestors and its current lifestyle (5). Here,
we restrict our attention to the use of FBA models to gener-
ate testable hypotheses on the outcome of short-term adaptive
evolution.

As mentioned above, flux balance analysis uses optimization
principles to find one particular network state that maximizes
biomass production, that is, cellular growth. Because growth
can be considered as a fitness correlate in microbes, FBA mod-
els can be seen as models about adaptation (51) in which in
vivo metabolic states are sought that maximize organismal fitness.
Microbial metabolism is optimized by the process of adaptive evo-
lution, therefore FBA has, in principle, the potential to predict
the outcome of evolutionary adaptation and give insight into the
constraints that influence adaptation. An essential step in opti-
mality approaches is to test the model predictions against empir-
ical observations to reveal the particular selective forces and con-
straints that might have played significant roles during the evolu-
tionary history of the organism under study.

Various experimental works have been performed to evalu-
ate the power of FBA to predict the outcome of both natural
and laboratory evolution. For example, it has been demonstrated
that in vivo and ¢z silico flux distributions are consistent under
certain environmental conditions in E. coli (11, 25), suggesting
that maximizing biomass production might have been an impor-
tant selective force in the history of E. coli. However, simple FBA
models fail to explain the metabolic behavior of microbes that do
not metabolize nutrients most efficiently (29, 48). For instance, S.
cerevisine uses a mixture of respiration (high-yield route) and fer-
mentation (low-yield route) to utilize glucose even under aerobic
conditions when glucose is abundant in the medium (29). Apply-
ing alternative objective functions instead of biomass yield (52)
or using game-theoretical approaches (53, 54), that is, formu-
lating the optimization problem as frequency dependent instead
of frequency independent, could help to resolve discrepancies
between model predictions and experimental observations.
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Suboptimal metabolic behavior of wild-type strains might
also stem from incomplete adaptedness to the tested conditions
and experiments have been designed to adapt strains under spe-
cific growth selection pressures in the laboratory to test whether
evolved strains display % silico-predicted growth properties. One
such adaptive evolution experiment has been performed in E. cols,
with growth rate as the selection criterion and glycerol uptake as
the main carbon source to produce biomass components (55).
Cells initially grew sub-optimally on glycerol, but adapted over
a period of ~60 days (1,000 generations), toward the FBA-
predicted optimal behavior. One would expect that such an adap-
tation event should be reflected in the genotype and this has
been demonstrated by whole-genome resequencing of evolved
strains. In particular, mutations were identified in the glycerol
kinase gene, which is clearly associated with the growth envi-
ronment (56). Adaptation to utilize glycerol has also been pre-
dicted, and experimentally verified, for a lactic acid bacteria, show-
ing extremely low initial growth rates in a glycerol environment
(57). Growth of lactic acid bacteria with glycerol as the main car-
bon source has never been demonstrated experimentally before,
even though the metabolic model predicted this output pheno-
type. Similarly, FBA can be used to predict the result of evo-
lutionary adaptation in response to gene deletions, that is, the
outcome of compensatory evolution. For example, adaptive evo-
lution of E. coli strains carrying metabolic gene deletions resulted
in increased growth rates that were similar to those predicted
by FBA (in 78% of the strains tested) (58). Taken together,
these studies clearly demonstrate that FBA has the potential
to predict the outcome of adaptive evolution at the phenotype
level.

4. Future
Challenges

Constraint-based models of microbial genome-scale metabolic
reconstructions present a simple computational framework to
explore the metabolic capacity of wild-type and mutant strains
under different environmental conditions, thereby providing a
mapping between genotype and metabolic phenotype. Despite its
simplicity and dependence on optimality principles, these mod-
els proved successtul to compute the viability of mutant strains,
to make testable predictions on gene loss and gene gain pat-
terns on the phylogenetic tree, and, in some cases, to predict the
phenotypic outcome of short-term adaptive evolution. However,
the same approach appears to perform poorly in predicting weak
growth effects of mutations in yeast, at least on glucose media.
Furthermore, it remains to be seen how accurately in vivo genetic
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interactions can be captured within this framework. Given that
weak fitness effects and epistatic interactions are especially impor-
tant to understand the process of evolution and are more fre-
quent than strong effects, there is a great need to develop com-
putational approaches that can accurately describe mutations with
weak phenotypic impacts (1). We now briefly discuss some possi-
ble strategies to improve the predictive power of the constraint-
based framework. First, constraint-based metabolic models can be
made more realistic by imposing additional relevant constraints
to decrease the solution space. Some of the proposed extra con-
straints include thermodynamic constraints (59) (i.e., elimina-
tion of thermodynamically infeasible solutions) and regulatory
constraints (60) (i.e., elimination of reactions that are repressed
under a given condition). With the rapid ongoing development of
high-throughput techniques that accumulate data on intracellular
metabolite concentrations, mRNA, protein expression levels, and
reaction fluxes (61, 62), these additional constraints could be rou-
tinely applied in future studies (see (63, 64)). Second, new algo-
rithms to compute the immediate physiological effect of muta-
tions need to be developed and tested. Clearly, the assumption
of optimal growth is not tenable for mutants and some meth-
ods have been put forward to describe metabolic states after gene
removal (24, 25). However, these modified optimization algo-
rithms are largely ad hoc, and it remains to be seen whether
more realistic alternative methods can be developed based on
empirical data on physiological changes following gene deletions,
including high-throughput data on alterations in growth prop-
erties (28), metabolic footprints (65), intracellular fluxes (43),
and mRNA expression (66). Furthermore, by assuming maximal
biomass production in the wild type, the FBA approach is unable
to capture beneficial loss-of-function mutations (only the addi-
tion of new reactions could increase 2 silico growth in this frame-
work). This particular shortage of FBA could be alleviated only by
developing new algorithms to calculate wild-type growth behav-
ior. Third, there are efforts underway to reconcile constraint-
based and kinetic modeling approaches in order to build large-
scale dynamic models of cellular metabolism without the need
for extensive experimental data (67, 68). Such hybrid frame-
works would allow the piecewise incorporation of both additional
flux constraints and information on enzyme kinetics when they
become available and would hopefully improve the predictive
power of large-scale models in determining metabolic responses
to perturbations. Given the tremendous efforts put into generat-
ing functional genomics and comparative data and inferring cel-
lular networks in yeasts, we expect that S. cerevisine would be
at the forefront of developing new generations of genome-scale
metabolic models and applying them to evolutionary questions.
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