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Glossary

Analogous enzymes: Two enzymes in different species that share the same

catalytic function but have unrelated amino acid sequences.

Bidirectional best hits: Two genes from different organisms that are each

other’s closest matches in reciprocal sequence similarity searches and thus

might be supposed to be functional orthologs.

Constraint-based analysis: A methodology for analysis of metabolic networks

that uses various constraints (physico-chemical, topological, environmental or

regulatory) to limit the range of achievable functional states that are accessible

to the organism.

EC number: Enzyme Commission number for the classification of enzymatic
With the completion of sequencing projects for several
parasite genomes, efforts are ongoing to make sense of
this mass of information in terms of the gene products
encoded and their interactions in the growth, develop-
ment and survival of parasites. The emerging science of
systems biology aims to explain the complex relation-
ship between genotype and phenotype by using net-
work models. One area in which this approach has been
particularly successful is in the modeling of metabolism.
With an accurate picture of the set of metabolic reactions
encoded in a genome, it is now possible to identify
enzymes or transporters that might be viable targets
for new drugs. Because these predictions greatly depend
on the quality and completeness of the genome annota-
tion, there are substantial efforts in the scientific com-
munity to increase the numbers of metabolic enzymes
identified. In this review, we discuss the opportunities
for using metabolic reconstruction and analysis tools in
parasitology research, and their applications to proto-
zoan parasites.
function.

Flux balance analysis (FBA): A type of constraint-based analysis that imposes

mass balance and flux capacity constraints on the network and uses an

optimization procedure to find a steady-state flux distribution that maximizes

the biomass yield of the cell without the need for measurements of kinetic

parameters. FBA can be used to identify essential reactions and to simulate

growth in different environmental conditions.

Functional orthologs: Two genes from different organisms that share the same

function, having both arisen from the same ancestral gene.

Horizontal gene transfer: A mechanism by which genes might be transferred

between different species, for example, from a prokaryote to a protozoan

through endosymbiosis.

Machine learning: A field of computer science in which existing knowledge is

used to train a program to recognize or to classify new instances within the

same domain.

Metabolic control analysis: A method for calculating the degree of sensitivity

of the flux through a pathway to variations in the concentrations of each of its

enzymes. Metabolic control analysis requires detailed knowledge of the kinetic

parameters for each reaction.

Metabolic reconstruction: A method for predicting an organism’s complement

of metabolic enzymes and the network of reactions that it supports; the

prediction is derived from a combination of genome sequence analysis,

experimental data and reasoning based on network structure.

Missing enzyme or pathway hole: An enzyme that is presumed to be present in

a genome on the basis of the results of metabolic reconstruction, but for which

a gene has yet to be identified.

Phylogenetic profiling: A comparative genomics method for suggesting

biological processes associated with a gene of unknown function; phylogenetic

profiling is based on the observation that sets of genes that form functional

modules tend to be gained or lost from the genome together.

Profile model: A bioinformatic model for identifying a protein functional

domain; the model represents the frequency of amino acids observed at each
Metabolic reconstruction in post-genomic parasitology
Genome sequencing projects have been undertaken for
numerous protozoan parasites, and much sequence infor-
mation is now publicly available. Complete genome
sequences have been published for several Apicomplexa
(including two Plasmodium species [1,2], Cryptosporidium
parvum [3] and Cryptosporidium hominis [4]) and the
trypanosomatids Trypanosoma cruzi [5], Trypanosoma
brucei [6] and Leishmania major [7]. Sequencing of several
other protozoan, helminth and parasitic nematode gen-
omes is ongoing, and data are publicly available. Published
genome annotations provide initial predictions of themeta-
bolic enzymes, and preliminary genome-scale metabolic
reconstructions (see Glossary) for Plasmodium falciparum
and the trypanosomatids have been produced [6,8].

Genome annotation and metabolic reconstruction can
be considered complementary efforts: isolated enzymatic
functions are likely to indicate false-positive annotations,
whereas missing enzymes in otherwise complete pathways
might represent as-yet unassigned gene functions. The
annotation of parasitic genomes is difficult owing to their
great divergence and compositional bias, but funds are
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lacking for complete manual curation of several neglected
organisms. Owing to these difficulties, the scientific com-
munity has been enlisted to assist curation of the parasite
genomes available at present [9].

For some industrially significant prokaryotes, the
analysis of reconstructed metabolic networks has already
proved useful; for example, in increasing the production of
a desired metabolic product [10]. In the context of a patho-
genic organism, however, metabolic reconstruction has the
potential to play an important part in the drug discovery
position in a multiple alignment of protein sequences taken from a range of

organisms.
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Figure 1. Summary of metabolic reconstruction for a parasite genome. Flowchart showing the various data structures (rounded boxes) and operations (grey rectangles)

involved in the preparation of a metabolic reconstruction and subsequent prediction of drug targets for a parasitic organism. The colours of the boxes indicate the nature of

the data source: red for experimental data, orange for information derived from genome sequences, blue for network structures and green for drug targets.

Review TRENDS in Parasitology Vol.23 No.11 549
process [11]. With advances in metabolic network recon-
struction and analysis, and the increasing data sets of
parasite and host genome sequences, metabolic reconstruc-
tion in parasitology, although challenging, is now a realis-
tic goal. In this review, we discuss tools for this field and
some of their applications (Figure 1).

Reconstruction of metabolic networks
General methods for metabolic reconstruction applicable
to prokaryotic genomes have been recently reviewed else-
where [12]. Here, we focus on the issues surrounding the
application of these methods to eukaryotic parasites.

Most techniques for predicting the enzyme complement
of an organism rely on the availability of a fully annotated
genome. An example of this approach is the Pathway Tools
software [13], which uses text-miningmethods to produce a
preliminary reconstruction thatmust be refined bymanual
curation. The reliability of these metabolic reconstructions
therefore depends crucially on the accuracy and complete-
ness of the genome annotation. Pathway Tools has been
used by several consortia to produce metabolic pathway
databases for fully sequenced organisms, including Homo
sapiens [14], Arabidopsis thaliana [15] and Plasmodium
falciparum [8] (see the BioCyc Database, http://biocyc.org).
Researchers are encouraged to support the curation of
www.sciencedirect.com
these databases; continual revision is necessary as more
organism-specific pathways are added and further infor-
mation about gene function is discovered.

To assist in this type of metabolic reconstruction, sev-
eral integrated genome annotation systems have been
developed that can incorporate information from both
computational tools and manually curated sources. A
key feature of the most recent software is the application
of comparative genomics techniques across multiple
sequenced genomes to improve functional annotations
[16,17].

Extending metabolic reconstruction beyond model
species
With genomes for which an expert annotation is unavail-
able or substantially incomplete, but for which a reliable
set of gene structure predictions has been obtained, it is
possible to produce a ‘first-pass’ metabolic reconstruction
by using automated methods (e.g. see Refs [18,19]). In the
simplest case, this reconstruction consists of performing
BLAST [20] searches against annotated genomes and look-
ing for bidirectional best hits that are assumed to be
functional orthologs, allowing the assignment of enzymatic
annotations [21]. This method works well as long as an
annotation of a closely related organism is available, but is

http://biocyc.org/


Table 1. Global analysis of reconstructed metabolic networksa

Genome Enzymes Metabolites

Produced and

consumedb
Produced only

(not consumed)c
Consumed only

(not produced)d %Misse

P. falciparum 346 685 409 148 128 40.29

C. parvum 281 520 298 110 112 42.69

T brucei 476 869 569 168 132 34.52

T. cruzi 583 1040 692 196 152 33.46

L. major 560 986 673 179 134 31.74

S. cerevisiae 626 1078 754 175 149 30.06

E. coli 767 1183 876 167 140 25.95
aThis table was constructed with SHARKhunt software [23], which is based on the reference metabolic network of KEGG [73]. The numbers of enzymes and metabolites in the

reconstructed network are given.
bMetabolites in the reconstructed network can be predicted to be both produced and consumed.
cEnzymes can be predicted to produce the metabolite, but no enzyme can be predicted to consume it.
dThere is a prediction of an enzyme that consumes the metabolite but not an enzyme that produces it. Note that the fifth and sixth columns refer only to metabolites in these

categories for the species concerned and that are both produced and consumed in the KEGG reference network. Metabolites in these two categories are likely to be adjacent to

network holes (i.e. missing enzymes that would produce or consume them).
ePercentage of metabolites next to potential holes.
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not sensitive enough to detect some of the highly divergent
enzymes within a parasite genome. A more sophisticated
search technique is to use a library of profile models
derived from multiple alignments of enzyme functional
domains to predict the enzymatic functions of each protein
in the target proteome, as implemented in the PRIAM
software [22].

Reliance on completed genomes, however, can unnecess-
arily delay the investigation of metabolic function for
unfinished and ongoing genome projects. For prokaryotic
organisms, a set of open reading frames is easily obtained
and can be used as input into a protein-sequence-based
tool. For eukaryotes, however, the presence of introns
means that analysis of a set of open reading frames is
usually inappropriate, and ab initio gene-finding tools will
often produce unsatisfactory results unless a suitable
training set of gene structures is available. The SHAR-
Khunt software [23] addresses this issue by using the
PRIAM [22] library of profile models to search through
DNA sequences for regions with significant similarity to
known enzymes. Even at less than a single coverage of the
genome, sufficient enzyme-encoding genes can be detected
by this method to give a reasonable idea of the metabolic
capabilities of an organism.

Despite these advances in search techniques, the phy-
logenetic distances from model organisms are often so
great that successful metabolic reconstruction for para-
sites remains extremely challenging [24]. Enzymes might
Table 2. Reconstruction of pantothenate and coenzyme A biosynt

P. falciparum C. parvum T. gondii E. tenell

EC MP PtdCho KG P2 MSb KG MS MSb MSb

2.1.2.11 X X

1.1.1.169 X X

6.3.2.1 X X

2.7.1.33 X X X X

6.3.2.5 X X X X X

4.1.1.36 X X X X X

2.7.7.3 X 10�7 10�5 10�7

2.7.1.24 X X X X X X X X
aThis table shows the results of metabolic annotation of the biosynthesis pathways of pan

using several software systems and websites (KG, KEGG [73]; PtdCho, PlasmoCyc [8];

Enzymes are labeled by their EC numbers: 2.1.2.11, 3-methyl-2- oxobutanoate hydroxym

alanine ligase; 2.7.1.33, pantothenate kinase; 6.3.2.5, phosphopantothenate-cysteine liga

sphate adenylyltransferase; and 2.7.1.24, dephospho-CoA kinase. An ‘X’ indicates that the

all organisms with all software packages.
bIn these examples, the statistical support (profile match E value) is given because it is ab

with default parameters.

www.sciencedirect.com
have functions that are not represented in sequence data-
bases, they might be functional analogs unrelated to other
proteins catalyzing the same reaction, or they might
simply have diverged too far to be recognizable. For
example, the only remaining unidentified step in folate
synthesis in Plasmodium was found, through biochemical
approaches, to be mediated by an unusual ortholog of an
enzyme normally associated with tetrahydrobiopterin syn-
thesis (S. Dittrich and J. Hyde, personal communication).
Additional complications such as the high A + T content of
the Plasmodium genomes and the general proliferation of
low-complexity regions in apicomplexans will further
reduce the sensitivity of sequence-based methods for
enzyme identification.

Pathway holes in metabolic networks
With the difficulty of assigning specific enzymatic function
in parasite genomes, initial automated metabolic recon-
structions usually produce networks with many ‘holes’ –
reactions essential for a complete biochemical pathway,
but for which no enzyme has been annotated in the gen-
ome. Table 1 shows an analysis of holes in metabolic net-
works predicted on the basis of genome data with the
SHARKhunt system. In the apicomplexans, more than
40% of predicted metabolites identified on the basis of
enzyme functions are either ‘substrates’ or ‘products’
without a predicted enzyme to catalyze the reaction.
This percentage is reduced to approximately 33% in the
hesis for various parasitesa

a T. annulata L. major T. brucei T. cruzi E. histolytica

KG MSb KG MSb KG MSb KG MSb KG MSb

X X X X X X X X

X X X X

X X X X X X X X

10�7 10�8 10�5 10�4 X 10�3

X X X X X X X X X

tothenate (first three EC number steps) and coenzyme A (last five EC number steps)

P2, PUMA2 [16]; MS, metaSHARK [23]; and MP, Malaria Metabolic pathways [25]).

ethyltransferase; 1.1.1.169, 2-dehydropantoate 2- reductase; 6.3.2.1, pantoatebeta-

se; 4.1.1.36, phosphopantothenoylcysteine decarboxylase; 2.7.7.3, pantetheinepho-

enzyme has been located in the genome. Note that annotations are not available for

ove(weaker than)the default cut-off (10�10); in all other examples, software was used
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trypanosomes, and better characterized organisms have
baseline values of 25%–30%. Many of these holes can be
attributed to failures of the automated method to find all
enzymes, but some might represent metabolites obtained
from the host or other more complex deviations from
standard metabolic pathways (as described for the folate
pathway earlier).

Table 2 examines these effects in more detail for the
linked pathways synthesizing pantothenate and coenzyme
A. Several software systems and websites are compared,
although PlasmoCyc [8] and Malaria Metabolic Pathways
(MMP) [25] involve substantial human input. The systems
do not agree perfectly, and there are many holes. Software
systemsmight disagree simply through the use of different
statistical cut-offs to define significant hits or for more
complex reasons. For EC numbers 2.7.1.33 and 6.3.2.5 in
P. falciparum, for example, the genes predicted by meta-
SHARK and MMP contain large (�200 amino acid) low-
complexity regions that can confuse identification.

The results for P. falciparum in Table 2 illustrate the
value of manual input and distant homology detection in
metabolic reconstruction. Only MMP has a hole-free path-
way from pantothenate to coenzyme A. The automated
SHARKhunt system finds all enzymes except 2.7.7.3, but
closer inspection of the results reveals a hit for this enzyme
with lower statistical support. In this case, the profiles
used by SHARKhunt detected a potential distant evol-
utionary relationship that would elude simple BLAST-
based methods. Alone this evidence would be weak, but
in the presence of strong support for the other enzymes a
reasoned manual analysis would add this gene to complete
the pathway. Thus, despite the holes, the results in Table 2
provide evidence that most of these organisms have the
ability to synthesize coenzyme A from pantothenate, but
probably depend (with the exception ofEimeria tenella and
Toxoplasma gondii) on their hosts for a supply of this
substrate.

Of the manually informed metabolic reconstructions for
P. falciparum, MMP is the most current and informed. The
PlasmoCyc [8] reconstruction contains 798 reactions and
679 enzymes, but has 241 holes, many of which are in
pathways where only 1–2 enzymes have been annotated in
the genome. The presence of such a small percentage of the
enzymes in a pathway does not usually provide support for
the presence of that pathway. Nevertheless, current bio-
chemical knowledge of Plasmodium is heavily biased
towards the erythrocytic stages, and it is clear from the
number of orphan enzyme activities (in pathways where
few other enzymes have been found) that our knowledge of
the malaria metabolic network will be improving for the
foreseeable future.

Searching for the ‘missing’ enzymes
Although the problem of filling pathway holes remains a
difficult one, some techniques are available that can help to
identify candidate genes wherever a specific enzyme is
thought to be present but is not yet annotated. Compara-
tive genomicsmethods include the analysis of cross-species
patterns of gene retention (‘phylogenetic profiling’), gene
fusion events, expression profiles, shared regulatory sites,
and proximity to functionally related genes on the genome
www.sciencedirect.com
[26]. Enzymes that are evolutionarily unrelated to known
proteins with the same function (‘functional analogs’)
might also be discovered by analyzing anticorrelations in
the presence of genes across genomes of different species
[27]. Machine learning techniques (e.g. see Ref. [28]) can be
used to integrate these diverse sets of observations to give
an overall value of the likelihood that a candidate gene has
the required function.

An alternative explanation for an apparent pathway
hole in a parasitic organism is that either the enzymatic
function or the metabolite product is supplied by the host
or by the vector. These cases might be difficult to demon-
strate by genome analysis alone, particularly because
specific functional annotation of metabolite transporters
is difficult [29]. Detailed comparison of host and pathogen
enzyme complements, however, has suggested plausible
schemes for metabolite exchange – for example, in coen-
zyme A biosynthesis in intracellular bacterial pathogens
and symbionts [17,30,31] and in the parasites Encephali-
tozoon cuniculi, Giardia lamblia and P. falciparum [32].
Interference in metabolite dependence on the host is con-
sidered a very effective strategy for the future development
of novel antimicrobial drugs [29,31].

Quality control for reconstructed networks
Biochemical accuracy is crucial if the network is to be used
for computational analyses and, despite advances in auto-
matic reconstruction methods, these methods still have
limitations that can be overcome only by manual curation
based on the integration of genomic, biochemical, physio-
logical and comparative data. Potential problems include
incorrect substrate specificity, cofactor usage, reaction
reversibility, treatment of enzyme subunits as separate
enzymes, and missing reactions for which no genes have
been assigned so far [33].

Where parasite genomes have lost metabolic functions
relatively recently, there is also the possibility of false-
positive identification of an enzyme on the basis of its
remnant sequence. It is promising, however, that high-
quality reconstructions amenable to computational
analysis have been obtained for an increasing number of
bacterial pathogens, including Haemophilus influenzae
[34], Helicobacter pylori [35] and Staphylococcus aureus
[36,37].

Computational identification of essential enzymes
One approach to discover new drug targets is to find genes
that are essential during the targeted life-cycle stage of the
parasite. Although large-scale gene disruption screens
have been conducted in several model organisms [38,39]
and some pathogens [40–42], systematic experimental
identification of essential genes is not yet available for
most parasites. As a result, computational tools to predict
the set of indispensable genes on the basis of genome data
are in great demand. The availability of high-quality
metabolic network reconstructions paves the way for such
in silico approaches.

In principle, the behavior of biochemical pathways can
be simulated computationally by solving a set of equations
describing all enzyme-catalyzed reaction steps with
formulae taken from enzyme kinetics (e.g. the Michae-
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lis–Menten rate equation) [43]. The application of this type
of dynamic analysis to genome-scale networks is, however,
currently hindered by a lack of detailed information on
kinetic parameters. Because of these limitations, a new
modeling framework known as the ‘constraint-based
approach’ has been introduced to deduce the metabolic
phenotype from the genotype [44]. This approach attempts
to narrow – on the basis of the successive imposition of
governing physicochemical and biological constraints – the
range of possible phenotypes that a metabolic system can
display [44,45].

The widely used flux balance analysis (FBA) method
assumes that the metabolic network will reach a steady
state that satisfies certain constraints (e.g. mass balance
and flux limitations) and maximizes biomass production
[46]. Despite its simplicity, FBA has been shown to predict
essential genes with good accuracy in yeast [47] and
Escherichia coli [48]; thus, it might prove to be a useful
tool for rational identification of drug targets in microbes
[49]. Recently, FBA has been applied to the mycolic acid
pathway of Mycobacterium tuberculosis to find antituber-
cular drug targets [50].

A conceptual shortcoming of FBA is the assumption that
the flux distribution is optimal even in mutant cells. As a
result, attempts have been made to introduce more realis-
tic assumptions to increase the prediction accuracy of gene
deletion phenotypes [51,52]. Other approaches based on
the investigation of network topology have also been put
forward to predict vulnerable points of metabolic networks
(e.g. see Refs [8,53]).

Predicting multiple targets for combination therapy
Owing to both partial inhibition and the grave potential for
drug resistance in the field, it is important to inhibit
multiple targets [54]. A relevant issue in chemotherapy
is whether incomplete inactivation of enzyme activity will
be sufficient to compromise the fitness of the parasite. It is
well established that a partial decrease in enzyme activity
at most steps in a pathway will have only negligible effect
on the flux through the pathway [55].

The framework of ‘metabolic control analysis’ has been
developed to calculate the sensitivity of flux to inhibition of
any individual enzyme in the pathway. For example, the
function of the plasma membrane glucose transporter is
predicted to be the most sensitive step in the glycolytic
pathway of Trypanosoma brucei, and this prediction is
supported by experimental measurements [56]. Unfortu-
nately, such calculations can be performed only when a
detailed kinetic model is available; therefore, the appli-
cation of control analysis is restricted at present to a few
well-characterized pathways of a limited number of organ-
isms.

Lastly, it has been proposed that partial inhibition of
multiple targets might be more efficient than the complete
inhibition of a single target [57] – an idea that is supported
by the fact that several highly efficient drugs affect many
targets simultaneously. Indeed, the potential to identify
combinations of target enzymes whose inhibition acts in
synergy is a compelling motivation for the development of
accurate metabolic models for parasitic organisms. In the
simplest case, synergy would be expected for drugs target-
www.sciencedirect.com
ing two independent pathways for the biosynthesis of an
essential metabolite product, but there could be many
effective drug combinations that might be uncovered only
by computational analysis of the complete network or by
other systems biology approaches [58,59]. Empirically
determined combinations of existing monotherapies are
widely used against parasitic infections to mitigate the
rate of evolved resistance [60]. As our understanding of the
molecular mechanisms of drug resistance improves, com-
putational analysis coupled with laboratory evolution
experiments [61] will have immense value in the rational
design of drug combinations that will remain effective for
as long as possible.

Comparative genomics of pathogen and host
metabolism
Comparisons of parasite and hostmetabolic networks have
both evolutionary and chemotherapeutic interest, and an
important goal is to assemble integrated networks of
pathogen and host metabolic reactions that provide infor-
mation for interactions between the two organisms [62,63].
Differences in parasite and host metabolic gene contents
are due to gene losses and gene gain events such as
horizontal gene transfer [64]. Many parasites have lost
pathways that are essential in free-living species. For
example, Mycoplasma genitalium contains fewer than
500 genes [65] and the obligate anaerobes Entamoeba
histolytica and C. parvum lack Kreb’s cycle enzymes and
other metabolic pathways [66,67]. Parasite genomes, how-
ever, can also encode metabolic functions that are lacking
in humans [68]. For example, hemoglobin degradation in
Plasmodium species utilizes specialized proteases (e.g.
falcipain), and trypanosomes contain a novel mechanism
for inactivating free radicals [69].

The resemblance of some parasite pathways to parts of
prokaryotic metabolism suggests that these pathways
have been acquired by horizontal gene transfer (e.g. Cryp-
tosporidium thymidine kinase [64] and ferrodoxins in E.
histolytica and G. lamblia [70]). Indeed, the acquisition of
the apicomplexan plastid by secondary endosymbiosis of
an algal cell [71] represents an extreme horizontal gene
transfer event that contributed an essential component of
metabolism [72]. These surviving pathways are unique in
eukaryotes and thus represent attractive drug targets.

In combination with a metabolic database (e.g. KEGG
[73]), sequence similarity searches can rapidly predict
pathways that differ between host and parasite [74]. An
approachmotivated by set theory has also been proposed to
compare metabolic network topology between multiple
organisms [75]. An important next step will be the appli-
cation of metabolic modeling and the addition of functional
(e.g. metabolomic) data to decipher the physiological
importance of such network differences.

Concluding remarks
The reconstruction and analysis of metabolic networks is
at the forefront of systems biology, and developments are
ongoing at several different levels from control engineering
to computer science to comparative genomics. As these
techniques are evolving and our understanding of metab-
olism is increasing, in silicomodels are starting to generate
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real, testable predictions of metabolic function. Although
the number of completely novel broad-spectrum drug tar-
gets seems lower than previously thought [76], compu-
tational methods have great potential to help in the
discovery of new parasite-specific targets and possibly to
forecast therapies to combat resistance. With continuing
support from the research and drug-development commu-
nities, post-genomic parasitology will be well placed to
make the best use of these opportunities in the continuing
fight against parasitic diseases.
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