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Abstract—Segmentation is a fundamental problem in image
processing. In biomedical applications, for example cell analysis,
it is important to recognize cells with certain shape characteris-
tics. Although recent advances in microscopy and in experimental
methods have made the culturing and imaging of cells in 3D
environments possible, there is a great need for advanced image
processing methods capable of handling such data. In this paper
we present an energy minimization based method designed to
segment individual objects in 3D satisfying certain size and shape
properties. We introduce novel energy functionals designed to
penalize shapes unfit to given priors. The three dimensional
Euler elastica is also introduced as a new smoothness term, which
causes the least possible interference with other terms. Solving
the corresponding Euler-Lagrange equations, we demonstrate the
selective segmentation capabilities of such priors.

I. INTRODUCTION

Image segmentation is a fundamental problem in computer
vision and the basis of most follow up statistical analyses
in several applications. For example identification of cells
in microscopy images is one of the major challenges in
computational biology. Single-cell analysis of brain cells,
bacteria or tumors leads to a better understanding of
fundamental biological processes and to a more precise
treatment of diseases. A variety of methods were proposed to
segment cells in tissue sections and cell cultures, e.g. [1], [2],
and several software packages utilise these results for further
statistical analysis [3], [4]. Recent studies in biotechnology
show that cells cultured in a 3-dimensional microenvironment
mimic disease physiology more precisely than those cultured
in 2-dimension [5], [6]. To study cell-cell interactions and
create predictive models, different cell types are often mixed
and 3-dimensional co-cultures and organoids are grown.
The segmentation of such mixed 3D cell populations at the
single-cell level is a great challenge, especially when their
morphology shows high diversity. Although recent advances
in light microscopy and assay preparation made it possible
to successfully use these models for drug development and
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clinical applications, there is a great need for advanced
segmentation methods to most precisely and cost effectively
analyze these large-scale (often 10-100 TB) image data sets.

We approach the problem of segmenting single cells sharing
similar morphologies using the 3D extension of the active
contour framework [7], [8]. In [9], Molnar et al. introduced a
family of shape descriptors to capture objects with predefined
area, contour length, second moment, curvature or arbitrary
combination of these. This model was able to precisely
capture circular, elliptical and amoeba-like cell shapes. In
this paper we present novel energies capable to segment 3D
objects satisfying certain shape criteria. Our method is based
on minimizing functionals designed to penalize shapes unfit
to given parameters. We present a shape prior which forces
objects to assume a prescribed surface/volume ratio. Using
this prior it was possible to segment objects satisfying only
the given parameters. This selective capability of the model is
demonstrated on synthetic and fluorescent microscopy images.

The outline of the paper is the following. First, we briefly
review the notations and conventions in Section II. The energy
functionals used for segmentation are constructed in Section
III, for which the corresponding Euler-Lagrange and level set
equations are given in Section IV. The tests are carried out
in Section V, while we discuss the results and future work in
Section VI.

II. NOTATIONS AND CONVENTIONS

Surfaces will be denoted by S ⊆ R3 or S(u, v) ∈ R3

in parametrized form, where u and v are surface parame-
ters. Su,Sv ∈ R3 will denote the partial derivatives in the
tangent space at S(u, v). Recall that Su × Sv is normal
to the surface. The inward pointing unit normal Su×Sv

|Su×Sv| is
denoted by n. The sum curvature of the surface is denoted
by K, while KG is the Gaussian curvature. The integral∫
dS =

∫ √
|Su|2|Sv|2 − (Su · Sv)2dudv gives the surface



area and
∫
dV = − 1

3

∫
S · (Su × Sv)dudv gives the volume

of a surface S, where dS and dV are the surface and volume
element respectively.

To handle topological changes in the evolving surfaces,
a level set representation is used. In this paper, level set
functions are denoted by φ = φ(t,x), where t ∈ R and
x = (x1, x2, x3) ∈ R3 are the time and space variables
respectively. According to this, φt denotes the partial derivative
with respect to the time and ∇φ denotes the spatial gradient
∇φ = (φx1

, φx2
, φx3

). The Hessian matrix of φ is denoted by
H(φ) = (φxixj

)1≤i,j≤3.

III. FUNCTIONALS FOR SELECTIVE OBJECT
SEGMENTATION

In this section we present the functionals used for selective
object segmentation.

A. Size priors

Our functionals responsible for the size of the object will
serve two purposes. The minimizer functional will force the
surface to shrink, while the ratio functional will force it to
assume a prescribed volume. For minimizer, we use

MV (S) =

∫
dV = −1

3

∫
S · (Su × Sv)dudv, (1)

which minimizes volume. The functional meant to force the
objects towards certain volume is defined by

RV (S) =
1

kV k
0

(∫
dV − V0

)k

, (2)

where V0 is the preferred volume and k ∈ N is arbitrary. We
refer to (2) as the volume prior. For even k, the functional
prefers objects with volume V0. For odd k it has an inflection
at V0, thus while it prefers zero volume, it has no effect on
objects with volume V0.

B. Shape prior

To control the shape of the objects, we have to use a
functional which penalizes deviation from a given shape
descriptor. For this purpose, we define a prior, which was
designed to prefer shapes with given surface/volume ratio and
is defined by

SA(S) =
1

2V 2
0

[(∫
dS

) 3
2

− p
∫
dV

]2
, (3)

where p is a fixed parameter and S0 is the preferred sur-
face. The functional penalizes the deviation from the ratio

p = surface
3
2

volume . From now on, we refer to (3) as the amoeba
prior.

The minimal value of the amoeba parameter is p = 3
√

4π ≈
10.6, which is achieved only by spheres. Thus by setting the
amoeba parameter to this value, we can force objects towards
spherical forms (Fig. 1).

Fig. 1. Effects of the amoeba prior on various initial objects.

C. Smoothness terms

In order to avoid slow convergence or unstable behavior
caused by the shape and size priors, additional functionals can
be introduced to regulate the solution. In general, when higher-
order derivatives are not present in the equations used for
segmentation, simple smoothness terms, for example surface
or volume minimizers can be used (see Section III-A). Because
of interference with other terms, these will not work in our
case. Instead we use the so-called Euler elastica, which mea-
sures the bending energy of the surface. In two dimensions,
it has been applied e. g. to impainting problems [10]. For a
general survey on Euler elastica, see [11]. The functional itself
is defined by

E(S) =
1

2

∫
K2dS, (4)

where K is the sum curvature of the surface. It is worth to
note that this is a dimensionless quantity.

D. Data term

During the tests, we used the anisotropic data term (see
[12])

D(S) =

∫
∇I · ndS, (5)

but in principle, a large range of data terms are feasible.

E. The composite functional for selective segmentation

In practice, the selective segmentation consists of two steps.
First we find the individual objects in the image, then we turn
on the shape and size priors for each object if the presegmen-
tation had converged. Alternatively, the active surfaces can be
initialized by thresholding. The two functionals we use are

L = αD + βMV (6)

and
L = αD + βSA + γRV + δE (7)

where SA is the amoeba prior,MV is the volume minimizing
functional, RV is the volume prior and E is the Euler elastica
term used to guarantee stability and smoothness.



It is important to note that the level set equations are ap-
plied for each individual connected component of the surface,
thus the speed functions for the level set evolution are only
available at the points of the active surface.

IV. EULER-LAGRANGE FORMALIZATION AND LEVEL SET
FUNCTIONS

The extremal surface of a functional can be obtained by
solving the corresponding Euler-Lagrange equations. In our
case, these equations will have the form

|Su × Sv|Qn = 0, (8)

where Q is some scalar field, depending on the particular
functional. The exact forms are specified in Section IV-A,
while the methods of finding the solution is discussed in
Section IV-B.

A. Differential equations for the functionals

The scalar field Q in the general Euler-Lagrange equation
(8) above for the volume minimizing functional is Q = −1,
we have Q = −K for the area minimizer and Q = ∆I for the
data term, where I is the image. Regarding the amoeba prior,
we have

Q =

[(∫
dS

) 3
2

− p
∫
dV

][
p− 3

2
K

(∫
dS

) 1
2
]
, (9)

where p = surface
3
2

volume is the given amoeba parameter describing
the shape of the object. For the Euler elastica term, we obtain

Q =
1

2
K3 − 2KGK +∇ · ∇K, (10)

where ∇ · ∇ is the Laplace-Beltrami operator, which is a
quantity of the tangent plane. The Euler-Lagrange equation
for the Euler elastica term is calculated in Appendix A.

B. Level set formalization

To obtain the extremal surfaces minimizing the functionals,
we use level set functions in combination with the gradient
descent method. The Euler-Lagrange equations in Section
IV-A can be translated directly to level set functions by making
the substitutions

Su × Sv 7→ ∇φ, n 7→ ∇φ
|∇φ|

. (11)

The curvatures of the implicit surface can be calculated with
the well known formulas

K 7→ −∇ · ∇φ
|∇φ|

, KG 7→ |∇φ|−4
∣∣∣∣H(φ) ∇φT
∇φ 0

∣∣∣∣ . (12)

V. RESULTS

This section describes the results on synthetic and fluores-
cent microscopy data. We present the effects of the amoeba
prior on various initial shapes and the selection capabilities of
the priors.

A. Synthetic tests

Fig. 1 shows the effect of the amoeba prior. In these
tests, the volume and amoeba priors were used. During the
evolution, the objects slowly morphed until they had reached
the prescribed shape parameter. To prevent the shapes from
collapsing, the volume prior (2) was used with k = 2.

Fig. 2 shows the selective segmentation capabilities of the
model on synthesized data using the volume prior (2) in
combination with the data term. Three spheroids were present
in the picture, the model was parameterized to select the one
in the middle and was able to segment it out based on the
prescribed volume.

Fig. 3 demonstrates the selective segmentation capabilities
of the amoeba prior. During these tests, the functional (7) was
used. Our model was able to distinguish between spheres,
cubes and ellipsoids based on their amoeba parameter p. If
the shape prior is turned on, the objects are forced towards the
prescribed p parameter. If this is in conflict with the objects in
the image, the volume prior (2) gets pushed over its inflexion
point, making the object to vanish.

B. Microscopy test

The selective segmentation results on a 3D confocal fluores-
cent microscopy image of cells with different shapes demon-
strates that our approach can be successfully used in analyzing
real microscopic images. Fig. 4 shows volume rendering of the
real images containing yeast cells. Fig. 5 presents the evolution
of the surface while selectively segmenting out the different
cell types.

Fig. 4. Test image of two Candida albicans cells. The cell walls are stained
using the Alexa FluorTM 488 Concanavalin A Conjugate. The left one is
in pseudohyphae form (p = 22.7877), while the one in the right side is a
normal yeast form (p = 13.4637). The goal is to recongize the two forms by
segmenting them out selectively.

VI. CONCLUSION AND FUTURE WORK

In this paper, using an energy minimization framework
we proposed size and shape priors for selective object seg-
mentation. Our priors were capable of segmenting various
objects based on their size and shape. We have also introduced
the 3-dimensional Euler elastica as a novel smoothness term.



Fig. 2. Selective segmentation based on the volume prior. The V0 in (2) was set to prefer the middle-sized sphere on the image.

(a) A sphere and a cube

(b) A sphere and an ellipsoid
Fig. 3. Selective segmentation based on the amoeba prior. The images to be segmented are shown on the left, while the evolution of the active surfaces for
distinct values of p are presented on the right. In the funcional (7), the parameters were (a) λ = 135, µ = 49, η = 1000, θ = 50 (b) λ = 135, µ = 49, η =
200, θ = 50

(a) Surface evolution while segmenting out the
pseudohyphae form.

(b) Surface evolution while segmenting out the
yeast cell in normal form.

Fig. 5. Selective segmentation of cells in the yeast microscopy image based on the amoeba prior. In the funcional (7), the parameters were (a) λ = 0.005, µ =
49, η = 1770, θ = 50 (b) λ = 0.045, µ = 49, η = 1000, θ = 50.

Moreover, the corresponding Euler-Lagrange equations for the
minimizing surfaces are also given.

Our model had performed well on synthetic and fluorescent

microscopy data. In principle, the proposed method is appli-
cable to a wide range of problems, e.g. selective segmentation
of cells based on morphological properties. As a next step we



will perform extensive tests on microscopy images to measure
performance.
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APPENDIX

Here we describe the derivation of the Euler-Lagrange
equation associated with a more general problem: the arbi-
trary function of the sum curvature with Lagrangian L =
F (K) |N|, is provided. Basic knowledge of classical differ-
ential geometry is assumed.

Additional notations: The contravariant basis vectors are
denoted by Su, Sv (Si ·Sk = δik, δik = 1 if i = k, 0 otherwise).
From here on i, k, l ∈ {u, v}. The direct (dyadic) product of
two vectors u, v is defined such that (uv) · w = u (v ·w).
Metric and inverse metric components are denoted by gik =
Si ·Sk and gik = Si ·Sk respectively. The Christoffel symbols
for the embedded surfaces can be defined by Γl

ik = Sl · Sik,
where Sik being the second partial derivative of the position
vector. The sum and the Gaussian curvatures as formulated by
Gauss are

K =
gvv (Suu · n)− 2guv (Suv · n) + gvv (Svv · n)

|N|2
, (13)

KG =
(Suu · n) (Svv · n)− (Suv · n)

2

|N|2
, (14)

where the denominator is the square of the normal vector N =
Su × Su and |N|2 is the determinant of the metric |N|2 =
guugvv − g2uv . The basic differential geometry formulae used
for the derivation of the Euler Lagrange equation are collected
below. An arbitrary vector w ∈ R3 can be decomposed at the
surface points using either the covariant or the contravariant
basis as

w = wuSu + wvSv + w⊥n

w = wuS
u + wvS

v + w⊥n, (15)

where wi = Si ·w, wi = Si ·w and w⊥ = n ·w. The relations
between the contravariant and covariant basis are

Si = giuS
u + givS

v

Si = giuSu + givSv. (16)

Note that the contravariant basis can also be expressed by the
following cross products:

Su =
1

|N|
Sv × n, Sv =

1

|N|
n× Sv. (17)

The second partial derivatives of the position can be decom-
posed as vector is

Sik = Γu
ikSu + Γv

ikSv + (Sik · n)n, (18)

where I = SuSu + SvSv + nn being the identity tensor
(I·w = w · I ≡ w, w ∈ R3). From (18)

Sik · Sl = Γu
ikgul + Γv

ikgvl. (19)

The (right) gradient of any quantity X restricted to the surface
is defined by X∇ .

= ∂X
∂u S

u + ∂X
∂v S

v . The divergence of a
vector field Y is defined by Y ·∇ .

= ∂Y
∂u ·S

u+ ∂Y
∂v ·S

v . Simple
calculation shows that the sum curvature can be expressed as
the negative of the divergence of the unit normal vector:

K = −nu · Su − nv · Sv = n · Su
u + n · Sv

v. (20)

The following basic identities are directly follow from the
definitions:

∂guk
∂Su

= Sk (21)

∂ |N|
∂Sk

= |N|Sk (22)

∂Sik ·N
∂Su

= |N| [(Sik · n)Su − Γu
ikn] , (23)

e.g. for (22), formulae (17) are used. The partial derivatives
of n and|N| (from (22)) are:

nk = − (n · Suk)Su − (n · Svk)Sv (24)
|N|k = |N| (Γu

uk + Γv
vk) . (25)

In (24), decomposition (15) and Si · n ≡ 0→ nk · Si = −n ·
Sik, in (25) identities |N|k = ∂|N|

∂Su
·Suk + ∂|N|

∂Sv
·Svk are used.

Starting with an equivalent expression to (13) K = K |N||N|
(to replace Sik · n with Sik ·N in the numerator) and using
formulae (21,22):

∂K

∂Su
=2

(Svv · n)Su − (Suv · n)Sv

|N|2

− gvvΓu
uu − 2guvΓu

uv + guuΓu
vv

|N|2
n

− 2KSu.

(26)

Note that applying the first line of (16), the (half of the) first
term of (26) can be alternatively written as

guu (Svv · n)− guv (Suv · n)

|N|2
Su

+
guv (Svv · n)− gvv (Suv · n)

|N|2
Sv.

(27)

The Euler-Lagrange equation: the equation for the La-
grangian having second order derivatives can be arranged as:

∂

∂u

(
− ∂L

∂Su
+

∂

∂u

∂L

∂Suu
+

1

2

∂

∂v

∂L

∂Suv

)
+

∂

∂v

(
− ∂L

∂Sv
+

∂

∂v

∂L

∂Svv
+

1

2

∂

∂u

∂L

∂Suv

)
.

(28)



The calculations for the first three terms are as follows: a)
∂L
∂Su

= |N| ∂F∂K
∂K
∂Su

; expanding the right side

∂L

∂Su
= |N|

(
F − 2K

dF

dK

)
Su

+ 2
dF

dK

(Svv · n)Su − (Suv · n)Sv

|N|

− dF

dK

gvvΓu
uu − 2guvΓu

uv + guuΓu
vv

|N|
n,

(29)

where (26) is used; b) ∂
∂u

∂L
∂Suu

+ 1
2

∂
∂u

∂L
∂Suu

= Sv ·
∂
∂u

(
dF
dK

Sv

|N|n
)
− Su · ∂

∂v

(
dF
dK

Sv

|N|n
)

, using ∂L
∂Suu

= dF
dK

gvv

|N|n,
1
2

∂L
∂Suv

= − dF
dK

guv

|N|n, and expanding the right side

∂

∂u

∂L

∂Suu
+

1

2

∂

∂u

∂L

∂Suu

=
d2F

dK2

(
gvv

∂K

∂u
− guv

∂K

∂v

)
n

|N|

+
dF

dK

2guvΓu
uv − guuΓu

vv − gvvΓu
uu

|N|
n

+
dF

dK

−gvv (Suu · n) + guv (Suv · n)

|N|
Su

+
dF

dK

−gvv (Suv · n) + guv (Svv · n)

|N|
Sv,

(30)

where the second term is the sum given by the derivatives of
the covariant basis vectors Si (using (19)) and the denominator
|N| (using (25)), whilst the third an fourth terms come from
the derivatives of the unit normal vector n (using (24)). Adding
(29,30) and using (27), the following terms remain:

∂

∂u

∂L

∂Suu
+

1

2

∂

∂v

∂L

∂Suv
− ∂L

∂Su

=
d2F

dK2

(
gvv

∂K

∂u
− guv

∂K

∂v

)
n

|N|

+
dF

dK

(Suv · n)Sv − (Svv · n)Su

|N|

+ |N|
(
K
dF

dK
− F

)
Su.

(31)

Applying same steps for the second three terms of (28) the
result is identical to (31) with the indices u, v swapped.
Summing up the terms in the normal direction, the Euler-
Lagrange equation (28) takes the form

|N|
(
K
dF

dK
− F

)
(Su

u · n + Sv
v · n)

+ 2
dF

dK

(Suv · n)
2 − (Suu · n) (Svv · n)

|N|

+
d3F

dK3

[
gvv
|N|

(
∂K

∂u

)2

− 2
gvv
|N|

∂K

∂u

∂K

∂v
+
guu
|N|

(
∂K

∂v

)2
]

+
d2F

dK2

[
gvv
|N|

∂2K

∂u2
− 2

gvv
|N|

∂2K

∂u∂v
+
guu
|N|

∂2K

∂v2

]
+
d2F

dK2

∂K

∂u

[
− gvv
|N|

Γu
uu + 2

gvv
|N|

Γu
uv −

guu
|N|

Γu
vv

]
+
d2F

dK2

∂K

∂v

[
− gvv
|N|

Γv
uu + 2

gvv
|N|

Γv
uv −

guu
|N|

Γv
vv

]
.

(32)
Similar calculation shows that the components in the tangent
plane are all zero. In (32) the first term includes the sum
curvature (20), the second term the Gaussian curvature (14).
Simple calculation shows that the sum of the last four lines
is the (|N| times the) divergence of the gradient i.e. the
Laplace-Beltrami of dF

dK : ∂
∂u

[(
∂
∂u

dF
dK

)
Su +

(
∂
∂v

dF
dK

)
Sv
]
· Su

+ ∂
∂v

[(
∂
∂u

dF
dK

)
Su +

(
∂
∂v

dF
dK

)
Sv
]
·Sv (the relation between the

metric and inverse metric
[
gik
]

= [gik]
−1 is used). Finally

the Euler-Lagrange equation associated with the Lagrangian
L = F (K) |N| can be written as

|N|
[(
K
dF

dK
− F

)
K − 2

dF

dK
KG +∇ · ∇ dF

dK

]
n = 0,

(33)
where ∇ · ∇ is a usual notation for the Laplace-Beltrami
operator. An alternative formula to (33) can be written as
|N|

[(
K dF

dK − F
)
K − 2 dF

dKKG +
(
dF
dK∇∇

)
· ·I−1

]
n = 0,

where I stands for the first fundamental form i.e. the metric
tensor with components gik and “··” is the double scalar
product operator (the result is the sum of the products of
the corresponding components of the tensors involved in
the operation). Using similar steps, one can deduce Euler-
Lagrange equation for the arbitrary function of the Gaussian
curvature, that turns to be

|N|
[
2K

(
F − dF

dKG

)
+KG

(
dF

dKG
∇∇

)
· ·II−1

]
n = 0,

(34)
where II stands for the “second fundamental form” with
components Sik · n.
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