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Summary

� The ectomycorrhizal (ECM) symbiosis has independently evolved from diverse types of

saprotrophic ancestors. In this study, we seek to identify genomic signatures of the transition

to the ECM habit within the hyperdiverse Russulaceae.
� We present comparative analyses of the genomic architecture and the total and secreted

gene repertoires of 18 species across the order Russulales, of which 13 are newly sequenced,

including a representative of a saprotrophic member of Russulaceae, Gloeopeniophorella

convolvens.
� The genomes of ECM Russulaceae are characterized by a loss of genes for plant cell wall-

degrading enzymes (PCWDEs), an expansion of genome size through increased transposable

element (TE) content, a reduction in secondary metabolism clusters, and an association of

small secreted proteins (SSPs) with TE ‘nests’, or dense aggregations of TEs. Some PCWDEs

have been retained or even expanded, mostly in a species-specific manner. The genome of G.

convolvens possesses some characteristics of ECM genomes (e.g. loss of some PCWDEs, TE

expansion, reduction in secondary metabolism clusters).
� Functional specialization in ECM decomposition may drive diversification. Accelerated gene

evolution predates the evolution of the ECM habit, indicating that changes in genome archi-

tecture and gene content may be necessary to prime the evolutionary switch.

Introduction

Fungi fulfill diverse and essential functional roles in facilitating
ecosystem viability at a multitude of scales, and these roles are
directly mediated by their gene content and evolutionary his-
tory. Current understandings of functional roles of fungi are
closely linked to their nutritional uptake mode because fungi
must live in close proximity to nutrient sources for

absorption. Fungal strategies for nutrient acquisition are
dynamic across the fungal tree of life. Seemingly redundant
trophic strategies have independently evolved numerous times.
Within a single order, Sebacinales, we see multiple origins of
plant-associated roles including endophytism, ectomycorrhizas,
orchid mycorrhizas, ericoid mycorrhizas and liverwort symbio-
sis, all derived from a saprotrophic ancestry (Weiß et al.,
2016). This versatility of nutritional modes, with frequent
transitions during evolution can be seen throughout the Agari-
comycetes (Hibbett, 2006). Molecular traits contributing to
these plant-associated functional roles are largely unexplored,
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especially in ectomycorrhizal (ECM) fungi (Koide et al., 2014;
Martin et al., 2016).

The ECM symbiosis is functionally characterized by the trans-
fer of water and nutrients to the plant and photoassimilates to the
fungus through a cell-to-cell interface within roots, called the
Hartig net (Smith & Read, 2010). The ECM habit has indepen-
dently evolved in up to 82 lineages of fungi in Endogonomycetes,
Pezizomycetes, and Agaricomycetes (Tedersoo & Smith, 2017).
In plants, the ability to harbor these fungi have evolved in at least
30 lineages in Gymnospermae and Angiospermae (Brundrett &
Tedersoo, 2018). The ECM habit in fungi has evolved from
diverse ancestral trophic states, including white-rot saprotrophs,
brown-rot saprotrophs, litter decomposers and root endophytes,
with each evolutionary history necessitating different selective
pressures (Tedersoo & Smith, 2013; Martin et al., 2016; Pellitier
& Zak, 2018; Strullu-Derrien et al., 2018; Miyauchi et al.,
2020). These evolutionary shifts in trophic strategy have often
led to specializations of function that contribute to rapid diversi-
fication that are defining for clades of plant-associated fungi
(S�anchez-Garc�ıa & Matheny, 2017; Lutzoni et al., 2018;
S�anchez-Garc�ıa et al., 2020).

The characterization of the Laccaria bicolor genome established
a number of attributes that are characteristic for the genome of
an ECM fungus, such as high transposable element (TE) content,
loss of plant cell wall-degrading enzymes (PCWDEs), and the
occurrence of effector-like mycorrhiza-induced small secreted
proteins (MiSSPs) that are upregulated during symbiosis (Martin
et al., 2008; Labb�e et al., 2012; Pellegrin et al., 2015; Plett et al.,
2017). These genomic features have since been found in a wide
array of mycorrhizal fungi belonging to Ascomycota, Basidiomy-
cota and Mucoromycota (Kohler et al., 2015; Martin et al., 2016;
Morin et al., 2019; Miyauchi et al., 2020). To establish the evolu-
tionary events defining the origin(s) of ECM associations more
precisely and to discriminate these from lineage-specific evolu-
tionary changes, comparative genomic analyses of densely sam-
pled evolutionary lineages of ECM fungi, all descended from a
single origin of symbiosis, are needed. The evolution of ECM
genomes within a single lineage has been investigated for the
Amanitaceae, which showed a rapid expansion and contraction of
functionally relevant genes early in the evolution of the ECM
habit (Hess et al., 2018). Another study focusing on the
Pinaceae-associated genus Suillus found dynamic gene evolution
within the lineage, with secondary metabolites linked to host
specificity (Lofgren et al., 2021).

Russulaceae contains an iconic lineage of ECM fungi that are
dominant in ectotrophic landscapes and are prized for their edi-
ble mushrooms (Looney et al., 2018). Russulaceae possesses sev-
eral ecologically relevant attributes that warrant study in a
genomic context, such as a nitrophilic tendency of some members
(Lilleskov et al., 2002), the production of unique sesquiterpenoid
secondary compounds (Clericuzio et al., 2012), and an acceler-
ated evolutionary rate of speciation, morphological transition
and host expansion (Looney et al., 2016). The majority of species
in Russulaceae are ECM, forming a single clade. However, the
residual group of Russulaceae are made up of wood-decaying,
crust fungi (Larsson & Larsson, 2003). Thus, Russulaceae

provides an exceptional opportunity to study an evolutionary
transition between nutritional modes. Here, we describe trends
in genomic architecture and gene content in 18 representative
species of Russulales. Our dataset contains 13 previously unana-
lyzed genomes, including eight species of ECM Russulaceae and
their saprotrophic sister group (Gloeopeniophorella convolvens), as
well as a number of mainly saprotrophic members of Russulales,
including Amylostereum chailletii, Artomyces pyxidata,
Auriscalpium vulgare and Vararia minispora. Our analysis eluci-
dates patterns of functional diversity that have evolved within the
ECM symbiotrophs, including evolution of PCWDEs, retention
of genes to scavenge nitrogen compounds in soil organic matter,
secondary metabolism, and TE invasion favoring duplication of
species-specific genes. We hypothesize that a defined core set of
genes derived from the common ancestor of ECM Russulaceae
defines a particular niche for this lineage according to the ‘family
gene conservation’ hypothesis (Looney et al., 2018).

Materials and Methods

Taxon sampling and nucleic acid extraction

Newly sequenced genomes and transcriptomes were derived
from phylogenetically distinct lineages within the family Russu-
laceae. Representative species were sampled as mushroom
sporocarps from forested habitat in the Great Smoky Moun-
tains National Park and surrounding areas. To retrieve high-
molecular-weight DNA and undegraded RNA, the inner flesh
of the sporocarps was extracted in the field using a sterilized
scalpel and placed in a 50 mg Falcon tube. Material was then
flash-frozen in the field in liquid nitrogen. Tissue samples were
also attempted on Melin-Norkrans Modified media with col-
lections for experimental applications with a low success rate.
A member of the closest related extant outgroup, G. convolvens,
was also sampled for comparative analyses between different
trophic modes. Vouchered specimens are accessioned in the
herbarium of the University of Tennessee. Detailed methods
for DNA and RNA extraction, quality assessment and taxon
sampling are described in the Supporting Information Methods
S1–S3; Table S1.

Genome sequencing, assembly and annotation

All sequencing, assembly and annotation were performed at JGI.
Genome sequencing was done with Pacific Biosciences (PacBio)
technology, except for four genomes sequenced with Illumina
technology. All PacBio-sequenced genomes were assembled using
FALCON (Chin et al., 2016). Of the Illumina-sequenced genomes,
three were assembled serially using VELVET (Zerbino & Birney,
2008) followed by ALLPATHS-LG (Gnerre et al., 2011), and one
was assembled with ALLPATHS-LG alone. Mitochondrial genomes
were assembled separately. All transcriptome sequencing was
done with Illumina only, and subsequently assembled into puta-
tive transcripts using TRINITY (Grabherr et al., 2011) or RNNOTA-

TOR (Martin et al., 2010). Each genome was annotated using the
JGI Annotation Pipeline (Grigoriev et al., 2014; Kuo et al., 2014)
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aided by the transcriptome. Detailed methods are described in
Methods S3–S7).

Comparative genomic feature analyses

Statistics of JGI genome assemblies (i.e. N50, number of genes
and scaffolds, genome size) were obtained from JGI MYCOCOSM

(https://mycocosm.jgi.doe.gov). Genome completeness with
single-copy orthologues was calculated using BUSCO v.3.0.2 with
default parameters (Sim~ao et al., 2015). The TE coverage in
genomes was calculated using a custom pipeline, Transposon
Identification Nominative Genome Overview (TINGO; Morin
et al., 2019). The secreted gene repertoire was predicted as
described previously (Pellegrin et al., 2015). An annotated and
manually curated dataset of genes coding for carbohydrate-active
enzymes (CAZymes) was developed using the CAZy database
(Lombard et al., 2014). We calculated, visualized and compared
the count and ratio of total (present in the genomes) and pre-
dicted secreted CAZymes, lipases, proteases and small secreted
proteins (SSPs; < 300 amino acids) as a subcategory. We calcu-
lated the total count of the following using all predicted secreted
PCWDEs and fungal cell wall-degrading enzymes (FCWDEs).
We examined the total and predicted secreted counts of
CAZymes/lipases/proteases/SSPs. Statistically significant ecologi-
cal groups (P< 0.05) were determined. Output files generated in
this way were combined and visualized with custom R scripts,
Proteomic Information Navigated Genomic Outlook (PRINGO;
Miyauchi et al., 2020). The percentage of variances (R2) was esti-
mated for selected genomic features explained by variables
including ecological groups, phylogenetic distances and the
genome coverage of TEs with permutational multivariate analysis
of variance (PERMANOVA). Detailed procedures are as previ-
ously described (Miyauchi et al., 2020). We examined associa-
tions between TEs and different types of proteins with the R
packages PCATOOLS and GGALLY (Blighe & Lun, 2020; Schloerke
et al., 2021).

Phylogenomic inference and molecular clock analyses

We constructed a phylogeny based on orthologous genes among
the selected fungi using FASTORTHO with the parameters set to
50% identity, 50% coverage, inflation 3.0 (Wattam et al., 2014).
Protein sequences used for the process were genome-wide protein
assemblies from JGI fungal portal MYCOCOSM. We identified
clusters with single-copy genes, aligned each cluster with MAFFT

7.221 (Katoh & Standley, 2013), eliminated ambiguous regions
(containing gaps and poorly aligned), and concatenated single-
gene alignments with GBLOCKS 0.91b (Castresana, 2000). We
constructed a phylogenetic tree with RAXML 7.7.2 (Stamatakis,
2006) using the standard algorithm, the PROTGAMMAWAG
model of sequence evolution and 1000 bootstrap replicates.

A set of 38 genomes across the Agaricomycotina were selected
for calibrating a molecular clock and dating of the Russulales lin-
eage (Table S2). Gene selection for molecular clock analysis of
Russulales was done based on phylogenetic informativeness per-
formed in PHYDESIGN (L�opez-Gir�aldez & Townsend, 2011).

Molecular clock analysis was performed in BEAST v.1.8.4 (Drum-
mond et al., 2012) using the 20 most phylogenetically informa-
tive loci, owing to computational constraints of the program for
dealing with large datasets. Three calibrations based on fossils
were used: Archaeomarasmius leggetti, an agaric fossilized in 90
million-yr-old (Ma) Dominican amber as the minimum age of
Agaricales (Hibbett et al., 1997); Quatsinoporites cranhamii, a
poroid shelf fungus estimated at 113Ma as the minimum age of
the Hymenochaetales (Smith et al., 2004); and Geastroidea
lobata, a gastroid fruiting body with a double-layered peridium
from the Cretaceous (72–66Ma) (Krassilov & Makulbekov,
2003). The analysis used an uncorrelated lognormal relaxed clock
model prior with a constant coalescent tree prior. Markov chain
Monte Carlo analysis was run independently three times for
50 million generations, logging every 1000 generations. The runs
were checked for convergence and mixing using TRACER v.1.6
(Rambaut et al., 2018). An ultrametric maximum-clade-
credibility (MCC) tree was summarized in TREEANNOTATOR

1.8.4 with a burn-in of 25% of trees.

Secondary metabolite analysis

Secondary metabolite gene clusters (SMCs) were predicted with
ANTISMASH 5.0, using a relaxed strictness through the online dedi-
cated server (Blin et al., 2019). Filtered gene models were used as
feature annotations. The resulting .gbz files were analyzed
through the BIGSCAPE pipeline using default parameters and the
PFAM-A v.30.0 database (Navarro-Mu~noz et al., 2020).

Genome rearrangement analysis

Syntenic blocks were identified from pairwise comparisons of
genomes with the R package DECIPHER (Wright, 2015).
Macrosynteny was determined using the ‘FindSynteny’ function
with default parameters with the argument for masking repeat
sequence turned off, whereas mesosynteny was identified using
the modified parameters (i.e. maxSep = 1000, maxGap = 1000)
suitable for highly similar sequences at the gene level. We deter-
mined the genomic coordinates of genes from the JGI genome-
wide gene catalog files (Grigoriev et al., 2014). JGI functional
gene annotations from the INTERPRO database were used for the
description of intracellular and extracellular proteins (https://
mycocosm.jgi.doe.gov). Then, it was combined with the secreted
gene repertoire and repeats data described earlier. The integrated
results were used for the circular representation of the genome
assemblies with the combined genomic information using the R
package CIRCLIZE (Gu et al., 2014). In addition, we measured the
mean TE–gene distances with statistical support by comparing
the locations of observed genes and TEs and 5000 null hypothesis
genome models made by randomly reshuffling the locations of
genes. The probability (P-value) of mean TE–gene distances was
calculated using the R package REGIONER (Gel et al., 2016). The
process was conducted with a set of custom R scripts, Synteny
Governance Overview (SYNGO; Hage et al., 2021). Scaffolds
containing major syntenic regions among the species were visual-
ized along with the identified predicted secreted gene repertoire
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and TEs using the R package KARYOPLOTER (Gel & Serra, 2017).
Data integration was performed with a set of custom R scripts,
Visually Integrated Numerous Genres of Omics (VINGO).

Gene evolution analysis

Evolutionary gains or losses of orthologous gene groups were esti-
mated on the basis of the constructed phylogeny using Software
for Computational Analysis of gene Family Evolution (CAFE;
DeBie et al., 2006). The software uses a random birth and death
process to model gene gain and loss across a user specified tree
structure. The distribution of family sizes generated under the
random model provides a basis for assessing the significance of
the observed family size differences among taxa. We selected gene
families with P value < 0.001.

Evolutionary rate analysis

Orthologous gene clusters were imported into COUNT (Csur€os,
2018) for total and secreted gene repertoire clustering analyses to
assess gene evolution rates and reconstruct gene family history.
Gene clusters containing fewer than three species were filtered
out of the rate optimization. Rate optimization used the gain-
loss-duplication model with a Poisson distribution at the root
and lineage-specific variation estimated. The analysis was run for
100 rounds with a convergence threshold on the likelihood of
0.1. Gene ancestral reconstruction was inferred using Dollo parsi-
mony and posterior probabilities using a birth-and-death model.

Results

Phylogeny of Russulales

A reconstructed phylogeny of Russulales based on 725 single-
copy orthologs recovered Lactarius as forming the sister clade to
the rest of the ECM Russulaceae and Lactifluus forming the sister
clade to Russula (Figs 1a, S1). Within Russula, a clade comprising
R. brevipes and R. dissimulans was inferred as sister to the rest of
Russula (Fig. S1). The common ancestor of the ECM Russulaceae
is inferred to have arisen around the Cretaceous-Paleogene (K–
Pg) extinction event (73.6–60.1 Ma), a period of rapid ecological
and anatomical innovation in plant communities (Alfaro et al.,
2018). The family Russulaceae, including the saprotrophic G.
convolvens, began diversification around the same time as the
saprotrophic neighbor family in the order Russulales, Auriscalpi-
aceae, during the Cretaceous (c. 74Ma).

Main genomic features of Russulales

A total of 13 genomes were newly sequenced for this study,
including nine from Russulaceae (Table S1). Genomes of ECM
species within Russulales are larger than saprotrophic and dual
saprotrophic/pathogenic species (adjusted false discovery rate:
P< 0.05, pairwise PERMANOVA; Fig. 1), with Lactarius quietus
having the largest genome (115.9 Mb) and other ECM genomes
ranging from 43.3 to 63Mb (Fig. 1b; Table S1). Over 94% of a

benchmark set of conserved fungal genes (BUSCO; Sim~ao et al.,
2015) were found in genome assemblies (Fig. 1b), and up to
97% of the RNA-Seq reads mapped to the gene repertoire (see
the ‘info’ page at JGI Russulales portal, https://mycocosm.jgi.
doe.gov/Russulales/Russulales.info.html), indicating that assem-
bled genomes capture most of the coding gene space.

The total gene repertoire of Russulales comprises over 250 000
predicted genes for the 18 species compared, ranging from
10 514 genes for Multifurcata ochricompacta to 18 952 genes for
Peniophora sp. (Fig. S2). The core gene orthogroups that are
found in at least 17 of the 18 fungi make up one-quarter of all
genes, averaging c. 3500 genes for most species and up to 4023
genes for L. quietus. The species-specific gene content varies con-
siderably between species but not between trophic categories,
with Peniophora sp. and L. quietus having the highest number of
unique genes (11 721 and 10 313, respectively), and M. ochri-
compacta having only 2832 unique genes. Secondary alleles were
identified from sequenced dikaryotic genomes by the PacBio
sequencing technology; they comprised 14–39% of all protein
models (Table S1).

The major principal components of genomic features captured
> 80% of variation and clearly separated the ECM species from
the saprotrophic relatives for many of these features (Fig. S3a).
Variation in secreted lipases, secreted CAZymes, TE content and
secondary metabolites among the sampled genomes was primar-
ily explained by phylogenetic distances (Fig. 1c). However, the
total genome size, TE content, secreted CAZymes, and SSPs all
showed significant contributions from the fungal ecology, and
TEs were primary drivers of total genome size, number of
secreted proteases and number of SSPs. The ECM species
showed higher TE content with larger genome size and fewer
secreted CAZymes than the saprotrophic groups (Fig. 1d;
P< 0.05, pairwise PERMANOVA; Table S3). The variation in
gene numbers in individual secreted CAZyme classes (i.e. AA,
CBM, CE, GH, PL) was largely attributed to the phylogenetic
distance (P< 0.05, PERMANOVA), with the exception of
secreted glycoside hydrolases (GHs) (Figs 1c, S3b). Therefore,
the loss of secreted GH gene content, in particular, is driving the
reduction of secreted CAZymes in the ECM Russulaceae.

The evolution of plant cell wall degrading enzymes in ECM
Russulales

Ectomycorrhizal Russulales contain a smaller set of CAZymes
than do saprotrophic taxa (Figs 2, S4, S5; Table S4). They have
lost a core set of genes required for efficient degradation of
PCWDEs and FCWDEs. The number of gene copies for many
secreted enzymes involved in the decomposition of cellulose,
hemicellulose, pectin, lignin, chitin and mannan is restricted or
absent in symbiotrophs compared with the related saprotrophs,
including G. convolvens (Tables 1, S2; Fig. S4). For many orthol-
ogous clusters, however, this reduction is also seen in the genome
of G. convolvens, suggesting that it had already occurred in the
ancestor of Russulaceae (Tables S2, S5, S6). These orthogroups
include subtilases, aspartic proteases, AA3_2 aryl alcohol oxi-
dases, GH12 endoglucanases and expansin-like proteins, among
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others. The ECM Russulaceae have retained a few key ortholo-
gous clusters involved in cellulose degradation, such as GHs
GH45 and lytic polysaccharide monooxygenases (LPMOs, AA9)

which may be involved in the host root penetration or fungal cell
wall remodeling (Table S7) (Veneault-Fourrey et al., 2014;
Krizs�an et al., 2019; Zhang et al., 2019).
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Fig. 1 Overview of genome features of 18 fungi. (a) Phylogenetic reconstruction of 18 Russulales genomes. A total of 2518 single-copy genes were used
in RAXML with 1000 bootstrap iterations. Fruitbody form (FB form), hymenium type (Hym) and nutritional strategy (Nutr strat) are given with images of
the genome source (see details in Supporting Information Fig. S1). (b) The following parameters are shown: genome (genome size); TE content (coverage
of transposable elements (TEs) in the genomes); genes (number of genes); secreted (number of predicted secreted proteins); scaffolds (number of
scaffolds); L50 (N50 length); and BUSCO (genome completeness) (Table S1). (c) Percentage of variation explained in selected genomic features. R2 values
indicate contributions of genomic features tested. Abbreviations are as follows: PhlyloDist.PC1–3, major principal components covering > 80% of variation
in phylogenetic distances; ecology, saprotroph, ectomycorrhiza (ECM) or pathogen; TE.DNA/LTR/NonLTR, TE family coverage in the genomes. Circles
with numbers inside show R2-values contributing to the genomic features tested. Circles in red indicate significant variables (P < 0.05; PERMANOVA
model, genomic features ~ phylogeny + ecology + TE types). See detailed information in Tables S11, S12. (d) Comparisons of genome size, TE content and
small secreted proteins (SSPs) sorted by fungal ecology as a boxplot. Median values are indicated as gray lines within the box, representing the interquartile
range of the distribution. Significantly different groups in comparison to the ECM are indicated with an asterisk (*, P < 0.05, pairwise PERMANOVA;
Table S13).
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At a gene family level, the ECM Russulaceae is enriched in
GH45 cellulases and inhibitors of caspases and cysteine endopep-
tidases (family I32) compared with saprotrophic Russulales
(Table 1). An important aspect of ECM Russulaceae specializa-
tion is the retention of lignolytic manganese peroxidase (POD)
genes as a remnant of a white rot ancestry of Russulaceae
(Fig. S6). These species have not retained the same POD genes,
as two different clades of POD genes were recovered for ECM
Russulaceae. The two paralogous gene clusters are present in the
R. brevipes and Multifurca genomes, indicating that there were
probably multiple independent losses in both clades for the other
ECM species. In both cases, the same gene has been retained in
the closest extant saprotrophic ancestor, G. convolvens.

Although ECM Russulales have experienced a concerted loss
of CAZymes, members of Russulaceae have experienced
species-specific expansions of particular gene orthologs
(Table S7). This includes enzymes involved in degradation of
cellulose (e.g. GH5_12, GH5_30, GH45), hemicellulose (e.g.
CE4, CBM13), chitin (e.g. GH20, CBM18) and mannan (e.g.
GH92). The second largest genome, L. volemus, possesses the
highest copy numbers of AA1_1 laccases in Russulales. The
third largest ECM Russulaceae genome, M. ochricompacta, pos-
sesses the fewest number of genes in Russulales and the second
highest TE proportion. In the M. ochricompacta genome, the
gene content of three groups of subtilisin-like serine proteases
is particularly expanded, whereas it is absent in most of the
other species in Russulaceae, and the number of genes coding

for secreted CE4 chitin deacetylases and GH47 a-
mannosidases is also expanded. Lactifluus subvellereus is charac-
terized by a substantial expansion of AA5_1 glyoxal oxidases
with moderate expansions in aspartyl proteases and AA1_1 lac-
cases. Russula brevipes is the only ECM Russulaceae species to
possess PL14_4 b-1,4-glucuronan lyases, and the number of
GH72-CBM43 b-1,3-glucanosyltransglycosylases is expanded.
Expansion in Russula rugulosa includes a group of serine car-
boxypeptidases and a group of tyrosinases. In Russula vinacea a
cluster of carboxylesterase lipases is highly expanded. Not all
ECM Russulaceae species exhibit substantial expansions in their
secreted gene repertoire, with R. compacta and R. dissimulans
mostly lacking gene duplication-mediated expansions. Substan-
tial expansions are less common for nonECM Russulales, with
the exception of Peniophora, in which a cluster of lipases and
AA1_1 laccases are substantially expanded, and A. vulgare, in
which two subtilase clusters, a GMC oxidoreductase cluster
and a cluster of aspartyl proteases, are expanded.

Functional specialization is also evident in the enrichment of
unique species-specific secreted gene clusters for ECM Russu-
laceae. Lactarius quietus possesses unique secreted gene clusters,
with two clusters of putative fungistatic metabolites as well as a
thaumatin-like protein group and a group of unique expansin-
like proteins. Multifurca ochricompacta possesses a unique cluster
of fungistatic metabolite genes. Lactifluus volemus possesses a
unique cluster of secreted protein genes with a LysM domain.
Lactifluus subvellereus possesses a unique cluster of GH45
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Fig. 2 Predicted secreted gene repertoire of 18 members of Russulales. (a) Number of secreted genes for CAZymes, lipases, proteases and others (i.e. all
secreted proteins not in these first three groups). The group of small secreted proteins (SSPs) is a subcategory showing the number of SSPs (< 300 amino
acids). The size of bubbles corresponds to the number of genes. The fungi are colored according to their ecology. (b) The ratio of CAZymes, lipases and
proteases to all secreted proteins (left); and the ratio of SSPs among the entire secreted gene repertoire (right). (c) The number of plant cell wall-degrading
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endoglucanases. Russula compacta possesses a unique cluster of
hydrophobin genes. Russula brevipes is characterized by seven
unique gene clusters, of which the largest is a cluster of serine

carboxypeptidases. Russula dissimulans possesses a cluster of glu-
tathione S-transferases. The R. rugulosa genome also has many
expanded unique gene clusters, with a single large cluster of

Table 1 Total and secreted gene families enriched for species of ectomycorrhizal (ECM) Russulaceae and functional groups. Red indicates substantial
enrichment; purple indicates a unique family; black indicates no depletion among families with high gene count (more than three per genome).

Species Total gene repertoire Secreted proteins

Lactarius quietus

AA3_3 (alcohol oxidase), AA5_1 (copper radical oxidase), CBM13

(carbohydrate-binding module), GH45 (cellulase), GH92

(mannosidase), GT20 (α-trehalose-phosphate synthase), GT22

(mannosyltransferase), GT24 (glycoprotein α-glucosyltransferase),

C54 (cysteine protease), S53 (sedolisin), T06 (threonine protease)

AA5_1 (copper radical oxidase), EXPN

(expansin), GH45 (cellulase), S53

(sedolisin), GH13, GH13_22, I63,

M24A, T06

AA1, AA3, AA3_3, AA5_1, CBM12, CBM13, EXPN, GH13,

GH13_22, GH25, GH45, GH92, GT20, GT22, GT24, GT76, C04,

C54, C65, M14A, M16C, S53, T06, GGGX|ABH03

AA3_2, AA5_1, EXPN, GH13,

GH13_22, GH25, GH45, S10, S53, I02,

I63, M24A, T06, GGGX|ABH03

Lactifluus subvellereus
AA5_1 (copper radical oxidase), GH37 (trehalase) I25B

AA5_1, CBM12, GH13_22, GH37, M13, S09C, GX|ABH08 AA5_1, S09C, M23B, I25B, I25X

Lactifluus volemus

AA1_1 (laccase), GH20 (β-N-acetylglucosaminidase), GH37

(trehalase), S28 (lysosomal Pro-Xaa carboxypeptidase)
AA1_1 (laccase)

AA1_1, AA1_2, GH13_22, GH15, GH20, GH37, GH38, GT66,

A22B, C46, M03A, M76, S28, S72, T02, T03, T06, C82,

GGGX|ABH03

AA1_1, GH9, S10, GGGX|ABH03

Multifurca
ochricompacta

S08A (subtilisin), S28 (lysosomal Pro-Xaa carboxypeptidase)

CE4 (chitin deacetylase), GH47 (α-

mannosidase), M43B (cytophagalysin),

S08A (subtilisin), CE14

CE4, CE14, GH47, GT22, C01B, I25A, M43B, S08A, S28,

GX|ABH07
CE4, CE14, GH47, M43B, S08A, I25X

Russula brevipes

CBM50 (carbohydrate-binding module), GH47 (α-mannosidase), I43

(serine protease inhibitor), AA5
CBM50 (carbohydrate-binding module)

AA5, CBM18, CBM43, CBM50, CE14, GH3, GH5_30, GH17,

GH47, GH72, GT39, M23B, C82, A31, I32, I43
AA1_1, CBM50, GH9

Russula compacta
None None

GH13_1, GH13_5, A31 AA5_1, CBM50

Russula compacta
None None

AA1_2, CE9, GH13_1, C39, I32, M48X, S09A GH13_32, I25X

Russula rugulosa

GH5_30 (cellulase), GT48 (1,3-β-glucan synthase), C19 (ubiquitin-

specific protease), S16 (Ion protease), C85

GH5_12 (cellulase), GH5_30

(cellulase)

CBM12, EXPN, GH5_30, GH30, GH92, GT31, GT48, GT49,

GT59, C19, C45, I32, S10, S16, C40, C85
EXPN, GH5_12, GH5_30, S10, C19

Russula vinacea

GT4 (glycosyltransferase), GT48 (glycosyltransferase), C19

(ubiquitin-specific protease), I21
GH5_30 (cellulase), CE9

AA7, CE9, EXPN, GT4, GT48, GT69, GT76, C19, I25X, I32, C89,

A31, I21
EXPN, CE9, GH5_30

ECM Russulaceae GH45 (cellulase), I32 (IAP) GH45 (cellulase)

Saprotrophs

AA2, AA3_1, AA3_2, AA3_4, AA8, AA9, CBM1, CBM5, CBM35,

CE1, CE8, CE15, CE16, GH1, GH2, GH3, GH5, GH5_5, GH5_7,

GH5_12, GH5_22, GH5_50, GH6, GH7, GH10, GH11, GH12,

GH16, GH18, GH27, GH28, GH29, GH30_3, GH31, GH43, GH51,

GH53, GH55, GH74, GH76, GH78, GH79, GH81, GH95, GH105,

GH115, GH128, GH131, GH145, GT41, PL8_4, PL14_4, CO3B,

C12, C56, I51, M28E, G01, M77, GGGX|ABH04, GX|ABH09,

GX|ABH23

AA2, AA3_2, AA8, AA9, CBM1,

CBM5, CBM35, CE1, CE8, CE15,

CE16, GH3, GH5_5, GH5_7, GH6,

GH7, GH10, GH12, GH18, GH28,

GH30_3, GH35, GH43, GH51, GH53,

GH55, GH72, GH79, GH81, GH92,

GH95, GH115, GH145, PL8_4,

PL14_4, G01
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expansin-like proteins. Peniophora is the only nonECM member
with a large number of unique gene clusters, with 26 unique gene
clusters of which the largest cluster has nine gene copies.

The repertoire of small secreted proteins

The number of SSPs in the ECM species were similar to those of
saprotrophic or pathogenic relatives (Fig. 1d). However, c. 73% of
variation in the number of SSPs was explained by TEs and ecology
(Fig. 1c; P< 0.05, PERMANOVA). Small secreted proteins were
moderately correlated with the DNA transposon family EnSpm/
CACTA (Spearman coefficient = 0.47, P< 0.05; Fig. S3c), suggest-
ing evolutionary associations between TEs and SSPs. We identified a
single SSP gene that is evolutionarily conserved in all ECM Russu-
laceae species. It encodes a phosphatidylglycerol/phosphatidylinositol
transfer protein with an MD-2-related lipid-recognition domain
implicated in the recognition of lipids, including pathogen-related
products (Table S8). The L. quietus genome possesses 552 genes cod-
ing for SSPs, almost twice as high as other ECMRussulaceae.

Secondary metabolite diversity

In all, 409 biosynthetic gene clusters (BGCs) involved in secondary
metabolism were detected in Russulales genomes with the addition
of the recently sequenced fungi (Fig. S7). Species relatedness drove
differences in the number of secondary metabolite modules (41%;
P< 0.05, PERMANOVA; Fig. 1c). Members of Russulales outside
of Russulaceae possess more nonribosomal peptide-synthase
(NRPS)-like, combined T1PKS and NRPS-like, and higher total
number of BGCs than Russulaceae species, whereas Russulaceae
members possess more siderophore BGCs. Four NRPS BGCs share
homology among some or most of Russulaceae, which represent
two different metabolic pathways (Fig. S8a). A diverse group of up
to eight BGCs for terpene synthase are conserved among at least
some members of Russulaceae, with two BGCs also represented in
Auriscalpiaceae (Fig. S8b). Two BGCs representing a single polyke-
tide synthase pathway with a ferric reductase transporter domain, as
well as another group of two BGCs representing a single pathway
with an aspartyl protease domain are present in most members of
Russulaceae, including the saprotrophicG. convolvens (Fig. S8c,d).

Gene evolution rate in Russulaceae

Across the total gene repertoire, ECM Russulaceae and sapro-
trophic Russulales experienced comparable numbers of gene
duplications and losses with a slightly lower overall rate of gene
gain (Figs 3, S9). The overall rate of gene evolution (gain, loss
and duplication) was accelerated in the ancestors of both ECM
Russulaceae (internode 8–9) and saprotrophic Russulaceae (in-
ternode 9–12). Species-specific gene evolutionary rates were
higher for L. quietus and S. hirsutum across the total gene reper-
toire and only for ECM Russulaceae members across the secreted
gene repertoire. Gene evolution rate varied across the secreted
gene repertoire, with a higher rate of gene loss (0.08), gene dupli-
cation rates at about half of the loss rate (0.04), and gene gain
rates that were 10-fold less (0.004). An accelerated rate of gene

loss occurred in the total gene repertoire of the ancestor of Russu-
laceae (node 8). However, gene loss was the greatest in species-
specific lineages, indicating a high evolutionary rate of secreted
gene repertoire modification. Gene loss rates are over twice as
high as the total gene repertoire rates (0.18) and gene gain rates
are three orders of magnitude lower (89 10�6).

Impact of TEs on the genome landscape

Transposable elements comprise higher proportions of the genome
(%) in ECM Russulaceae than in nonECM Russulales, ranging
from 29% to 67% of genome assemblies (Fig. S10). Gypsy, Copia
long terminal repeat (LTR) retrotransposons, hAT families and
other unclassified repeats are among the most abundant TEs in
genomes from ECM Russulaceae. hAT repeats are involved in
RNA processing and are unique to ECM Russulaceae in the Rus-
sulales dataset (Hammani et al., 2012). Notably, Penelope nonLTR
retrotransposons are only present in L. quietus. The larger size of
genomes of ECM Russulales species is mainly a result of their
higher content in repeated elements (P< 0.05, PERMANOVA;
Figs 1c, S3c). DNA transposons contributed c. 42% of variation in
the genome size (P< 0.05, PERMANOVA; Fig. S3b). We found
a significant correlation between the genome size and DNA trans-
posons, EnSpm/CACTA, hAT and Mariner/Tc1 repeats (Spear-
man coefficient = 0.53, P< 0.0001; Fig. S3c).

The distribution of TEs and genes across the 10 largest scaffolds
of Russulales genomes were visualized using ‘Hanabi’ plots, showing
TEs forming ‘transposon nests’, or dense aggregations of TEs made
up of multiple families and unclassified repeats (Fig. 4). To examine
the potential association of gene structure and TE content, a permu-
tation test was performed to compare distances between TEs and
coding genes of 18 Russulales (Table S9). The ECM Russulaceae
genomes show statistically significant associations between SSPs and
TE-rich areas, with SSPs being more closely linked to TEs than in
nonECM Russulales (Fig. 5; P< 0.01). Nonsecreted genes were sta-
tistically more distant from TEs in ECM Russulaceae than in
nonECM Russulales (Fig. 5; P< 0.05). The exception to these pat-
terns was V. minispora, a known plant pathogen. Secreted CAZyme
families showed little or no association with TEs; however, associa-
tions between TE and lipases/proteases were detected in some ECM
species (Figs 5, S11). We selected genes and TEs within a defined
distance for further examinations. We defined a maximal TE–gene
distance as 4.5 kb (4 kbp for gene size + 500 bp to the nearest TEs)
as the majority of genes are no > 4 kb in size (Fig. S12). Small
secreted proteins were more strongly associated with TE pockets in
the ECM group compared with nonECM species, with most of the
ECM SSP genes located within a range of 500 bp to the nearest TE
(Fig. S13). Genes associated with TEs contained recurring PFAM
domains, such as WSC domain, cupredoxin or fungal hydrophobin
for SSPs. However, the majority of SSPs have unidentified functions
(82.4%; data not shown).

Gene synteny in Russulales

Gene synteny for five Russula species and G. convolvens was com-
pared across the dataset (Figs S14, S15–S17; Table S10).
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Russulaceae share the highest degree of synteny with each other
even though the size of scaffolds for the 10 largest scaffolds is vari-
able within Russulales genomes (Figs S18, S19). Syntenic regions
are disrupted by clusters of TEs (Fig. 4). The frequency of TE
insertions suggests that TEs accumulated further in TE-rich
regions during the course of evolution, forming ‘transposon nests’
that cause transposon breakpoints (Hess & Pringle, 2014). The
single largest syntenic block among five Russula species was used as
a landmark to investigate gene order and mesosynteny (Figs S20,
S21).

The concerted loss of CAZymes has been observed in conserved
portions of Russulaceae genomes by comparing the largest syntenic
region. This comparison reveals contrasting retention of the genes
of interest (e.g. AA3_2, AA2, AA9 and GH74) between the
saprotrophic G. convolvens and closely related ECM species that
have lost these traits, such as R. vinacea or R. brevipes (Fig. S13). A
conserved syntenic cluster of secreted CAZymes was detected
as a core secretory capacity for Russulaceae, which includes

glycosyltranferases and carbohydrate esterases. Less conserved syn-
tenic clusters are widespread for a larger array of secreted proteins
that includes glycoside hydrolases, polysaccharide lyases, expansin-
like proteins, carbohydrate binding modules and glycosyltrans-
ferases. Transposable element nests are infrequent across the syn-
tenic region and do not show a correlation with secreted genes,
indicating that association between repeated elements and secreted
genes are nonsyntenic owing to the activity of TEs.

Discussion

Evolutionary transition to the ECM lifestyle

Genomes of ECM fungi in the Russulaceae family present many
of the established hallmarks of the transition to ECM symbiosis,
including an expansion in genome size as a result of the accumu-
lation of repeated elements and a contraction in gene families
involved in the enzymatic breakdown of plant organic matter

Fig. 3 Evolutionary rate COUNT analysis of
Russulales genomes. Top: rates of gene loss,
duplication and gain for the total gene
repertoire along branches. The Poisson
distribution of the birth-and-death model is
given for the root node. Bottom: rates of
gene gain, loss and duplication for the
secreted gene repertoire along branches,
with dotted lines representing the rate length
exceeding the total line. Ancestral nodes are
numbered.
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(Kohler et al., 2015; Martin et al., 2016; Hess et al., 2018;
Miyauchi et al., 2020). The contraction of the PCWDE gene
repertoire coincides with the evolution of the ECM habit after
the split with the closest extant saprotrophic species, G. convol-
vens. Expansions in TE content in the ancestor of ECM Russu-
laceae may have facilitated adaptive shifts, such as loss of

PCWDEs, expansion of proteases/lipases, and diversification of
SSPs involved in mycorrhiza development. This remodeling is
inferred to have coincided with the K–Pg boundary extinction
event, suggesting that the shift may have been driven by a drastic
shift in plant community composition as a result of mass extinc-
tion (Nichols & Johnson, 2008). Ectomycorrhizal plant hosts at

Fig. 4 Macrosynteny comparison with five Russula species (Hanabi (fireworks) plot shows pairwise syntenic comparison of scaffold 1–10): R. dissimulans

(Rusdis1), R. brevipes (Rusbre1), R. vinacea (Rusvin1), R. compacta (Ruscom1) and R. rugulosa (Rusrug1). Outer circle, the size of scaffold 1–10; first inner
circle, genes located in the scaffolds (genes coding for CAZymes, small secreted proteins (SSPs), lipases and proteases are highlighted (see the legend for
details)); second inner circle, transposable element (TE) families and unknown repeats in the scaffolds (see the legend for details); vertical axis of each inner
circle, mean distance of neighboring genes/TEs. Short distances between the genes/TEs result in dots towards the center of the Hanabi plot, whereas long
distances result in dots towards the outer circle. Grey lines represent shared syntenic regions.
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this time began a shift towards highly variable root evolution
within plant families, and diversification of many angiosperm
host species occurred later, concurrent with the early diversifica-
tion of lineages within ECM Russulaceae (Looney et al., 2016;
Brundrett & Tedersoo, 2018).

Despite over 65Myr of divergence time between lineages of
Russulaceae, species share a high degree of conserved gene simi-
larity and synteny. Compared with the nonECM Auriscalpiaceae,
which has equivalent time of diversification, divergent lineages
within Russulaceae maintain at least five times more syntenic
links. A higher degree of gene order conservation is unexpected
in ECM fungi as the development of TE pockets is hypothesized
to break up synteny (Hess & Pringle, 2014); however, this con-
served gene order may be important for maintaining their con-
served niche and lifestyle. While a large proportion of SSPs are
species-specific, a conserved SSP was detected for Russulaceae
coding for a phosphatidylglycerol/phosphatidylinositol transfer
protein. A homolog of this protein was significantly accumulated
in cork oak roots developing ectomycorrhizas with Pisolithus tinc-
torius (Sebastiana et al., 2017). This particular SSP may function
as an effector to control the membranes of host plant cells for effi-
cient nutrition exchange and hints at a latent mechanism for
ECM symbiosis. This amount of conservation is counter to the

paradigm of effectors arising through convergent evolution and is
quite uncommon (Kohler et al., 2015).

We detected a reduction in the repertoire of gene clusters
involved in secondary metabolism among the Russulaceae, which
has not been widely investigated in other ECM groups (Lofgren
et al., 2021). This may constitute another hallmark feature of the
evolution of the ECM habit or may be specific to Russulaceae.
This was particularly pronounced in NRPS-like SMCs, which
have diverse functions but are most known to produce mycotoxins
and antibiotics (Bushley & Turgeon, 2010). We hypothesize that
his reduction in NRPS-like SMCs may correspond to a reduction
in defensive compound diversity in ECM as a result of cooption
of plant host defenses and subsequent release on selective pressure.
Russulaceae saw an expansion in siderophore SMCs containing
conserved N-terminal iron uptake chelate (IucC) domains, which
have been implicated in pathogenesis in Rhizopus and may be
important for iron sequestration (Carroll & Moore, 2018). Based
on gene cluster similarity, Russulaceae possesses a conserved set of
terpene-related SMCs that may be involved in the production of
diverse lactarane sesquiterpenes that have frequently been charac-
terized in Russulaceae (Clericuzio et al., 2012).

Across the total gene repertoire, a heightened rate of gene evo-
lution comprising a high rate of gene loss and duplication was
detected as preceding the evolution of the ECM habit. Gene loss
was demonstrated in the POD gene family of the common ances-
tor of Amanitaceae, another group containing extant sapro-
trophic species as a sister group to a diverse ECM lineage (Hess
et al., 2018). Protracted rates of gene gain, loss and duplications
across the ancestral total gene repertoire of Russulaceae suggest
that priming of the ECM habit may be tied to changes in the
mode of nutrition (i.e. polysaccharide metabolism) instead of sig-
naling pathways controlling biotic interactions (e.g. effector-like
SSPs). These pre-existing traits may have emerged more fre-
quently in facultative saprotrophs loosely interacting with tree
roots, with the ability to switch nutritional modes being latent
across a wide diversity of fungi (Smith et al., 2017). The sapro-
trophic G. convolvens is known to widely colonize well-decayed
logs using a suite of oxidases, which may necessitate the ability to
circumvent plant root defenses within the wood for substrate
occupation (Nakasone, 1990). Some species of ECM Russulaceae
form mushrooms on well-decayed logs and are thought to associ-
ate with roots within the wood and may utilize the POD ligni-
nases retained from white rot ancestry to occupy this niche
(M€akip€a€a et al., 2017). Other elements of the secreted gene reper-
toire, such as PCWDEs, FCWDEs and proteases, that saw modi-
fications concurrent with the evolution of the ECM habit are
potentially more essential to the ECM lifestyle for Russulaceae
than host recognition pathways, effectors to circumvent host
defense or competitive interactions with other rhizospheric fungi.

Functional specialization within Russulaceae

The peculiar expansions of secreted protease and chitinase fami-
lies may indicate a possible specialization of Russulaceae fungi to
target nonplant-derived organic sources of nitrogen and phos-
phorus, such as fungal and bacterial necromass. Aspartyl
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Fig. 5 Observed and permutated transposable element (TE)–gene
distances. Yellow, mean TE–gene distances averaged from the 5000
reshuffled models; red, mean TE–gene distances observed in the genomes
with statistical significance (P < 0.01); gray, mean TE–gene distances
observed in the genomes. Distances (base) are log2-transformed
(Table S15). Color bars above the species names indicate fungal ecology.
Red, blue and yellow refer to ectomycorrhizal, saprotroph and
saprotroph/pathogen, respectively.

New Phytologist (2022) 233: 2294–2309
www.newphytologist.com

� 2021 The Authors

New Phytologist� 2021 New Phytologist Foundation. This article has been contributed to by US Government employees and

their work is in the public domain in the USA.

Research

New
Phytologist2304



proteases have been implicated in working in conjunction with
hydroxyl radicals to access organic nitrogen from necromass, and
these genes have been detected as upregulated in soil organic mat-
ter in the presence of the ECM species Paxillus involutus (Shah
et al., 2016; Beeck et al., 2018). The most extreme gene expan-
sion of 283 genes in a single orthologous cluster of subtilases with
pro-kumamolisin activation domains was observed for L. quietus.
Proteases encoded by these genes are involved in pathogenicity in
fungal parasites of animals and other fungi (Muszewska et al.,
2011). Russula gracillima and Russula exalbicans have been shown
to parasitize Lactarius mycorrhizas (Beenken, 2004), but para-
sitism in Russulaceae is undoubtedly rare. An alternate and more
likely explanation is that this pathway has been coopted for
plant–host interaction.

While the prevailing trend of a loss of PCWDEs in ECM
lineages is evident in ECM Russulaceae, the opposite trend of
functional specialization within secreted CAZymes can be seen
in different lineages of Russulaceae. Marked expansions in
shared and unique homologous clusters of secreted enzymes as
well as different gene families indicates selection for specialized
decomposition capabilities. Ectomycorrhizal decomposition,
such as ‘litter bleaching,’ has been proposed to contribute sig-
nificantly to soil carbon turnover in forested ecosystems with
phylogeny significantly predicting enzymatic activity (Talbot
et al., 2008, 2015; B€odeker et al., 2014; Zak et al., 2019). The
ability of an ECM symbiont to scavenge nitrogen, phosphorus
and trace elements is mediated through the activity of these
enzymes in soil organic matter, and the differential contribu-
tion of individual species can be detected by the plant host
and used as a criterion to mediate and select for its own myc-
orrhizal community (Hortal et al., 2017). Traits that have
been highlighted as potential drivers of diversification in ECM
fungi have primarily looked at morphological traits of sexual
reproduction and general ecological strategies, but adaptative
functional specialization within ECM lineages is understudied
and may be the key to understanding diversification and host
dynamics within these diverse groups (Looney et al., 2018;
S�anchez-Garc�ıa et al., 2020). The extent to which differential
ECM decomposition ability within other ECM lineages is pre-
sent and how these traits are partitioned within an ECM
community should be explored further.

Transposable elements driving gene innovations and ECM
regulation

Accumulation of repeated elements in the genomes of ECM
Russulaceae and the close physical proximity of TE clusters
and SSP genes suggest that TEs may promote gene innovation
(e.g. duplication in SSPs and proteases) in ECM Russulaceae
fungi. When TE insertions occur near host genes, expression
is potentially altered as a result of the silencing of the TE
through methylation mechanisms or TE activity on host cis-
regulatory elements (Chuong et al., 2017). The patterns of
localized TEs and their associated SSPs and proteases seem to
be species-specific. Such localized TEs may have contributed
to unique transcriptional regulation and gene expression. Our

findings are consistent with the view that accumulation of
TEs in particular genomic regions have affected certain genes
that trigger morphological and physiological changes that are
key to the ECM symbiosis (Chuong et al., 2017; Sultana
et al., 2017).

Conclusions

In some lineages, such as Russulaceae and Amanitaceae to some
extent, genetic traits typifying the evolution of ECM fungi (e.g.
loss of PCWDE orthologs, expansion of TE content, reduction
of SMCs) are already observed in the genomes of closely related
saprotrophic species, and these pre-existing traits may explain
the pervasive, recurrent evolution of ECM associations. While
the evolution of the ECM habit releases selection on genes
required to access plant carbon in the soil, these genes can be
coopted for functional specialization in the fungus’s ability to
access nutrients, colonize the apoplastic space of the host roots,
and/or gain a competitive advantage during community assem-
bly. This specialization may be tightly linked to coevolutionary
host interactions, mediated by a heightened adaptability of
ECM fungi through a heightened rate of gene expansion and
turnover through TE association. Genomic sampling within
Russulaceae for this study targeted single representatives of a
highly diverse group, so additional sequencing of targeted
groups will help to test hypotheses of functional specialization
and its relationship to diversification.
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